Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (5): 642-650    DOI: 10.3724/zdxbyxb-2021-0160
综述     
表观遗传修饰在神经退行性变性疾病中的作用研究进展
曲文政1,庄英粮1,2,李学坤1,2,*()
1.浙江大学医学院附属儿童医院 国家儿童健康与疾病临床医学研究中心 国家儿童区域医疗中心,浙江 杭州 310052
2.浙江大学转化医学研究院,浙江 杭州 310029
The roles of epigenetic modifications in neurodegenerative diseases
QU Wenzheng1,ZHUANG Yingliang1,2,LI Xuekun1,2,*()
1. Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China;
2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
 全文: PDF(2956 KB)   HTML( 50 )
摘要:

表观遗传修饰对神经发育、神经干细胞命运决定和神经系统的生理功能发挥具有重要的调节作用。异常的表观遗传修饰与阿尔茨海默病、帕金森病和亨廷顿病等神经退行性变性疾病的发生和发展有密切关系:异常升高的DNA甲基化修饰抑制了一些修复基因的表达,影响亨廷顿病进展;阿尔茨海默病患者大脑中H3K27ac和H3K9ac组蛋白修饰增加,影响神经变性;RNA甲基化修饰在阿尔茨海默病和帕金森病两种疾病动物模型中呈现差异化的改变。因此,表观遗传修饰可能作为神经系统疾病的潜在治疗靶点。本文综述了表观遗传修饰参与神经退行性变性疾病及其分子机制的最新研究进展。

关键词: 表观遗传学DNA修饰组蛋白修饰RNA修饰阿尔茨海默病帕金森病亨廷顿病综述    
Abstract:

In neuronal system, epigenetic modifications are essential for neuronal development, the fate determination of neural stem cells and neuronal function. The dysfunction of epigenetic regulation is closely related to occurrence and development of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease. Abnormally elevated DNA methylation inhibits the expression of some DNA repair-related genes and affects the progression of Huntington’s disease. In the brain of Alzheimer’s disease patients, the levels of H3K27ac and H3K9ac histone modifications increased. In addition, the alteration of RNA methylation in animal models of Alzheimer’s disease and Parkinson’s disease showed discrepancy trends. Therefore, epigenetic modifications may serve as potential therapeutic targets for neurodegenerative diseases. Here, we summarize the recent progress of the roles of epigenetic modifications in neurodegenerative diseases.

Key words: Epigenetics    DNA modification    Histone modification    RNA modification    Alzheimer’s disease    Parkinson’s disease    Huntington’s disease    Review
收稿日期: 2021-06-04 出版日期: 2021-12-29
:  R394  
基金资助: 国际科技合作重点项目计划(YS2017YFGH001214),国家自然科学基金(92049108)
通讯作者: 李学坤     E-mail: xuekun_li@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曲文政
庄英粮
李学坤

引用本文:

曲文政,庄英粮,李学坤. 表观遗传修饰在神经退行性变性疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 642-650.

QU Wenzheng,ZHUANG Yingliang,LI Xuekun. The roles of epigenetic modifications in neurodegenerative diseases. J Zhejiang Univ (Med Sci), 2021, 50(5): 642-650.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0160        https://www.zjujournals.com/med/CN/Y2021/V50/I5/642

图 1  组蛋白乙酰化与甲基化修饰、DNA修饰和RNA mA甲基化修饰示意图6组蛋白甲基化由组蛋白甲基化酶(HMT)与组蛋白去甲基化酶(HDM)两大类酶调控,组蛋白乙酰化由组蛋白乙酰化酶(HAT)和组蛋白脱乙酰酶(HDAC)调控.组蛋白甲基化或乙酰化修饰异常影响基因的转录表达.DNA甲基化修饰是胞嘧啶在DNA甲基化酶(DNMT)的作用下转化成5-甲基胞嘧啶(5mC).DNA5-羟甲基化修饰是在5mC去甲基化过程中,在TET作用下转化成5-羟甲基胞嘧啶(5hmC).5hmC可在TET和胸腺嘧啶DNA糖基化酶(TDG)的作用下,经碱基切除修复(BER)转化成胞嘧啶.RNA N6-甲基腺苷(mA)甲基化由“writers”、“erasers”和“readers”蛋白调控,其中“writers”是RNA甲基化酶,包括甲基转移酶样(METTL)3和METTL14等,“erasers”是RNA去甲基化酶,包括FTO和ALKBH5,“readers”包括YTHDF1/2/3等,调节RNA转运、剪切、翻译等.
1 LIX, JINP. Roles of small regulatory RNAs in determining neuronal identity[J]Nat Rev Neurosci, 2010, 11( 5): 329-338.
doi: 10.1038/nrn2739
2 YAOB, CHRISTIANK M, HEC, et al.Epigenetic mechanisms in neurogenesis[J]Nat Rev Neurosci, 2016, 17( 9): 537-549.
doi: 10.1038/nrn.2016.70
3 GREENBERG M V C, BOURC’HIS D. The diverse roles of DNA methylation in mammalian development and disease[J]. Nat Rev Mol Cell Biol, 2019, 20(10):590-670
4 ARMSTRONGM J, JINY, ALLENE G, et al.Diverse and dynamic DNA modifications in brain and diseases[J]Hum Mol Genet, 2019, 28( R2): R241-R253.
doi: 10.1093/hmg/ddz179
5 JONESP A. Functions of DNA methylation: islands, start sites, gene bodies and beyond[J]Nat Rev Genet, 2012, 13( 7): 484-492.
doi: 10.1038/nrg3230
6 HALDERR, HENNIONM, VIDALR O, et al.DNA methylation changes in plasticity genes accompany the formation and maintenance of memory[J]Nat Neurosci, 2016, 19( 1): 102-110.
doi: 10.1038/nn.4194
7 GREENBERGM, BOURC’HISD. The diverse roles of DNA methylation in mammalian development and disease[J]Nat Rev Mol Cell Biol, 2019, 20( 10): 590-607.
doi: 10.1038/s41580-019-0159-6
8 TAHILIANIM, KOHK P, SHENY, et al.Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]Science, 2009, 324( 5929): 930-935.
doi: 10.1126/science.1170116
9 KRIAUCIONISS, HEINTZN. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain[J]Science, 2009, 324( 5929): 929-930.
doi: 10.1126/science.1169786
10 GUT P, GUOF, YANGH, et al.The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes[J]Nature, 2011, 477( 7366): 606-610.
doi: 10.1038/nature10443
11 ITOS, D’ALESSIOA C, TARANOVAO V, et al.Role of TET proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification[J]Nature, 2010, 466( 7310): 1129-1133.
doi: 10.1038/nature09303
12 KOHLIR M, ZHANGY. TET enzymes, TDG and the dynamics of DNA demethylation[J]Nature, 2013, 502( 7472): 472-479.
doi: 10.1038/nature12750
13 WUX, ZHANGY. TET-mediated active DNA demethylation: mechanism, function and beyond[J]Nat Rev Genet, 2017, 18( 9): 517-534.
doi: 10.1038/nrg.2017.33
14 SZULWACHK E, LIX, LIY, et al.5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging[J]Nat Neurosci, 2011, 14( 12): 1607-1616.
doi: 10.1038/nn.2959
15 LISTERR, MUKAMELE A, NERYJ R, et al.Global epigenomic reconfiguration during mammalian brain development[J]Science, 2013, 341( 6146): 1237905.
doi: 10.1126/science.1237905
16 SUNW, ZANGL, SHUQ, et al.From development to diseases: the role of 5hmC in brain[J]Genomics, 2014, 104( 5): 347-351.
doi: 10.1016/j.ygeno.2014.08.021
17 KAASG A, ZHONGC, EASOND E, et al.TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation[J]Neuron, 2013, 79( 6): 1086-1093.
doi: 10.1016/j.neuron.2013.08.032
18 ZHANGR R, CUIQ Y, MURAIK, et al.Tet1 regulates adult hippocampal neurogenesis and cognition[J]Cell Stem Cell, 2013, 13( 2): 237-245.
doi: 10.1016/j.stem.2013.05.006
19 LIX, YAOB, CHENL, et al.Ten-eleven translocation 2 interacts with forkhead box O3 and regulates adult neurogenesis[J]Nat Commun, 2017, 8( 1): 15903.
doi: 10.1038/ncomms15903
20 YUH, SUY, SHINJ, et al.TET3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair[J]Nat Neurosci, 2015, 18( 6): 836-843.
doi: 10.1038/nn.4008
21 GO?ASZEWSKAA, BIKW, MOTYLT, et al.Bridging the gap between Alzheimer’s disease and Alzheimer’s-like diseases in animals[J]Int J Mol Sci, 2019, 20( 7): 1664.
doi: 10.3390/ijms20071664
22 DI FRANCESCOA, AROSIOB, FALCONIA, et al.Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells[J]Brain Behav Immun, 2015, 139-144.
doi: 10.1016/j.bbi.2014.11.002
23 HüLSA, ROBINSC, CONNEELYK N, et al.Brain DNA methylation patterns in CLDN5 associated with cognitive decline[J]Biol Psychiatry, 2021, online,
doi: 10.1016/j.biopsych.2021.01.015
24 MAS L, TANGN L S, LAML C W. Promoter methylation and gene expression of Pin1 associated with the risk of Alzheimer’s disease in southern Chinese[J]Curr Alzheimer Res, 2021, 17( 13): 1232-1237.
doi: 10.2174/1567205018666210208163946
25 SHUL, SUNW, LIL, et al.Genome-wide alteration of 5-hydroxymenthylcytosine in a mouse model of Alzheimer’s disease[J]BMC Genomics, 2016, 17( 1): 381.
doi: 10.1186/s12864-016-2731-1
26 BERNSTEINA I, LINY, STREETR C, et al.5-Hydroxymethylation-associated epigenetic modifiers of Alzheimer’s disease modulate tau-induced neurotoxicity[J]Hum Mol Genet, 2016, 25( 12): 2437.
doi: 10.1093/hmg/ddw109
27 GONTIERG, IYERM, SHEAJ M, et al.TET2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brain[J]Cell Rep, 2018, 22( 8): 1974-1981.
doi: 10.1016/j.celrep.2018.02.001
28 ZHANGY, ZHANGZ, LIL, et al.Selective loss of 5hmC promotes neurodegeneration in the mouse model of Alzheimer’s disease[J]FASEB J, 2020, 34( 12): 16364-16382.
doi: 10.1096/fj.202001271R
29 KUEHNERJ N, CHENJ, BRUGGEMANE C, et al.5-hydroxymethylcytosine is dynamically regulated during forebrain organoid development and aberrantly altered in Alzheimer’s disease[J]Cell Rep, 2021, 35( 4): 109042.
doi: 10.1016/j.celrep.2021.109042
30 JANKOVICJ, TANE K. Parkinson’s disease: etiopathogenesis and treatment[J]J Neurol Neurosurg Psychiatry, 2020, 91( 8): 795-808.
doi: 10.1136/jnnp-2019-322338
31 KAUTO, KUCHELMEISTERK, MOEHLC, et al.5-methylcytosine and 5-hydroxymethylcytosine in brains of patients with multiple system atrophy and patients with Parkinson’s disease[J]J Chem Neuroanat, 2019, 41-48.
doi: 10.1016/j.jchemneu.2018.12.005
32 MATSUMOTOL, TAKUMAH, TAMAOKAA, et al.CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease[J/OL]PLoS One, 2010, 5( 11): e15522.
doi: 10.1371/journal.pone.0015522
33 DESPLATSP, SPENCERB, COFFEEE, et al.α-synuclein sequesters Dnmt1 from the nucleus[J]J Biol Chem, 2011, 286( 11): 9031-9037.
doi: 10.1074/jbc.C110.212589
34 SCHMITTI, KAUTO, KHAZNEHH, et al.L-dopa increasesα-synuclein DNA methylation in Parkinson’s disease patients in vivo and in vitro[J]Mov Disord, 2015, 30( 13): 1794-1801.
doi: 10.1002/mds.26319
35 KANTORB, TAGLIAFIERROL, GUJ, et al.Downregulation of SNCA expression by targeted editing of DNA methylation: a potential strategy for precision therapy in PD[J]Mol Ther, 2018, 26( 11): 2638-2649.
doi: 10.1016/j.ymthe.2018.08.019
36 WUT T, LIUT, LIX, et al.TET2 - mediated Cdkn2A DNA hydroxymethylation in midbrain dopaminergic neuron injury of Parkinson’s disease[J]Hum Mol Genet, 2020, 29( 8): 1239-1252.
doi: 10.1093/hmg/ddaa022
37 MARSHALLL L, KILLINGERB A, ENSINKE, et al.Epigenomic analysis of Parkinson’s disease neurons identifies TET2 loss as neuroprotective[J]Nat Neurosci, 2020, 23( 10): 1203-1214.
doi: 10.1038/s41593-020-0690-y
38 NGC W, YILDIRIMF, YAPY S, et al.Extensive changes in DNA methylation are associated with expression of mutant huntingtin[J]Proc Natl Acad Sci U S A, 2013, 110( 6): 2354-2359.
doi: 10.1073/pnas.1221292110
39 KERSCHBAMERE, BIAGIOLIM. Huntington’s disease as neurodevelopmental disorder: altered chromatin regulation, coding, and non-coding RNA transcription[J]Front Neurosci, 2015, 509.
doi: 10.3389/fnins.2015.00509
40 MOLLICAP A, REIDJ A, OGLER C, et al.DNA methylation leads to DNA repair gene down-regulation and trinucleotide repeat expansion in patient-derived huntington disease cells[J]Am J Pathol, 2016, 186( 7): 1967-1976.
doi: 10.1016/j.ajpath.2016.03.014
41 WANGF, YANGY, LINX, et al.Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease[J]Hum Mol Genet, 2013, 22( 18): 3641-3653.
doi: 10.1093/hmg/ddt214
42 VILLAR-MENéNDEZI, BLANCHM, TYEBJIS, et al.Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington’s disease[J]Neuromolecular Med, 2013, 15( 2): 295-309.
doi: 10.1007/s12017-013-8219-0
43 JAKOVCEVSKIM, AKBARIANS. Epigenetic mechanisms in neurological disease[J]Nat Med, 2012, 18( 8): 1194-1204.
doi: 10.1038/nm.2828
44 MARZIS J, LEUNGS K, RIBARSKAT, et al.A histone acetylome-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex[J]Nat Neurosci, 2018, 21( 11): 1618-1627.
doi: 10.1038/s41593-018-0253-7
45 NATIVIOR, LANY, DONAHUEG, et al.An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease[J]Nat Genet, 2020, 52( 10): 1024-1035.
doi: 10.1038/s41588-020-0696-0
46 CHOIH, KIMH J, YANGJ, et al.Acetylation changes tau interactome to degrade tau in Alzheimer’s disease animal and organoid models[J/OL]Aging Cell, 2020, 19( 1): e13081.
doi: 10.1111/acel.13081
47 JANCZURAK J, VOLMARC H, SARTORG C, et al.Inhibition of HDAC3 reverses Alzheimer’s disease-related pathologies in vitro and in the 3xTg-AD mouse model[J/OL]Proc Natl Acad Sci U S A, 2018, 115( 47): E11148-E11157.
doi: 10.1073/pnas.1805436115
48 MASTROENID, DELVAUXE, NOLZJ, et al.Aberrant intracellular localization of H3k4me3 demonstrates an early epigenetic phenomenon in Alzheimer’s disease[J]Neurobiol Aging, 2015, 36( 12): 3121-3129.
doi: 10.1016/j.neurobiolaging.2015.08.017
49 GJONESKAE, PFENNINGA R, MATHYSH, et al.Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease[J]Nature, 2015, 518( 7539): 365-369.
doi: 10.1038/nature14252
50 PARKG, TANJ, GARCIAG, et al.Regulation of histone acetylation by autophagy in Parkinson disease[J]J Biol Chem, 2016, 291( 7): 3531-3540.
doi: 10.1074/jbc.M115.675488
51 LIB, YANGY, WANGY, et al.Acetylation of NDUFV1 induced by a newly synthesized HDAC6 inhibitor HGC rescues dopaminergic neuron loss in Parkinson models[J]iScience, 2021, 24( 4): 102302.
doi: 10.1016/j.isci.2021.102302
52 GUHATHAKURTAS, KIMJ, ADAMSL, et al.Targeted attenuation of elevated histone marks at SNCA alleviates α‐synuclein in Parkinson’s disease[J/OL]EMBO Mol Med, 2021, 13( 2): e12188.
doi: 10.15252/emmm.202012188
53 CHENX, XIEC, TIANW, et al.Parkinson’s disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging[J]Mol Neurodegener, 2020, 15( 1): 12.
doi: 10.1186/s13024-020-00360-0
54 KOVALENKOM, ERDINS, ANDREWM A, et al.Histone deacetylase knockouts modify transcription, CAG instability and nuclear pathology in Huntington disease mice[J/OL]eLife, 2020, e55911.
doi: 10.7554/eLife.55911
55 MERIENNEN, MEUNIERC, SCHNEIDERA, et al.Cell-type-specific gene expression profiling in adult mouse brain reveals normal and disease-state signatures[J]Cell Rep, 2019, 26( 9): 2477-2493.e9.
doi: 10.1016/j.celrep.2019.02.003
56 YILDIRIMF, NGC W, KAPPESV, et al.Early epigenomic and transcriptional changes reveal Elk-1 transcription factor as a therapeutic target in Huntington’s disease[J]Proc Natl Acad Sci U S A, 2019, 116( 49): 24840-24851.
doi: 10.1073/pnas.1908113116
57 LIS, MASONC E. The pivotal regulatory landscape of RNA modifications[J]Annu Rev Genom Hum Genet, 2014, 15( 1): 127-150.
doi: 10.1146/annurev-genom-090413-025405
58 MEYERK D, PATILD P, ZHOUJ, et al.5’ UTR m6A promotes Cap-independent translation[J]Cell, 2015, 163( 4): 999-1010.
doi: 10.1016/j.cell.2015.10.012
59 DOMINISSINID, MOSHITCH-MOSHKOVITZS, SCHWARTZS, et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]Nature, 2012, 485( 7397): 201-206.
doi: 10.1038/nature11112
60 LIUJ, YUEY, HAND, et al.A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]Nat Chem Biol, 2014, 10( 2): 93-95.
doi: 10.1038/nchembio.1432
61 JIAG, FUY, ZHAOX, et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]Nat Chem Biol, 2011, 7( 12): 885-887.
doi: 10.1038/nchembio.687
62 ZHENGG, DAHLJ A, NIUY, et al.ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]Mol Cell, 2013, 49( 1): 18-29.
doi: 10.1016/j.molcel.2012.10.015
63 WANGX, ZHAOB S, ROUNDTREEI A, et al.N6-methyladenosine modulates messenger RNA translation efficiency[J]Cell, 2015, 161( 6): 1388-1399.
doi: 10.1016/j.cell.2015.05.014
64 FRYEM, JAFFREYS R, PANT, et al.RNA modifications: what have we learned and where are we headed?[J]Nat Rev Genet, 2016, 17( 6): 365-372.
doi: 10.1038/nrg.2016.47
65 FUY, DOMINISSINID, RECHAVIG, et al.Gene expression regulation mediated through reversible m6A RNA methylation[J]Nat Rev Genet, 2014, 15( 5): 293-306.
doi: 10.1038/nrg3724
66 BATISTAP J. The RNA modification N6-methyladenosine and its implications in human disease[J]Genomics Proteomics BioInf, 2017, 15( 3): 154-163.
doi: 10.1016/j.gpb.2017.03.002
67 SHAFIKA M, ZHANGF, GUOZ, et al.N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease[J]Genome Biol, 2021, 22( 1): 17.
doi: 10.1186/s13059-020-02249-z
68 HANM, LIUZ, XUY, et al.Abnormality of m6A mRNA methylation is involved in Alzheimer’s disease[J]Front Neurosci, 2020, 98.
doi: 10.3389/fnins.2020.00098
69 FOOJ N, TANL C, IRWANI D, et al.Genome-wide association study of Parkinson’s disease in east Asians[J]Hum Mol Genet, 2017, 26( 1): 226-232.
doi: 10.1093/hmg/ddw379
[1] 马丽娟,吴爽,张凯,田梅,张宏. 大麻素1型受体正电子发射断层显像在神经精神疾病中的应用进展[J]. 浙江大学学报(医学版), 2021, 50(5): 666-673.
[2] 赵大鹏,陆韵薇,于顾然. 地黄对阿尔茨海默病小鼠行为学的影响及其对血脑屏障的保护作用[J]. 浙江大学学报(医学版), 2021, 50(5): 553-560.
[3] 宣自学,张轶雯,潘宗富,郑小卫,黄萍. 天然药物成分干预铁死亡抑制肿瘤的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 601-606.
[4] 石坚宏,李瑞芝,杨元宵,姬丽婷,李昌煜. α-细辛醚、β-细辛醚改善Aβ25-35诱导的PC12细胞损伤及机制[J]. 浙江大学学报(医学版), 2021, 50(5): 591-600.
[5] 孙琦,曹蔚,罗建红. GluN3亚基的N-甲基-D-天冬氨酸受体及其在中枢神经系统的功能[J]. 浙江大学学报(医学版), 2021, 50(5): 651-658.
[6] 史建蓉,马望前,汤慧芳. 磷酸二酯酶抑制剂治疗炎性肠病的研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 659-665.
[7] 唐玥,孔元原. 遗传性酪氨酸血症Ⅰ型及其筛查和诊治进展[J]. 浙江大学学报(医学版), 2021, 50(4): 514-523.
[8] 刘飞,冯春月,毛建华,傅海东. 2019冠状病毒病疫苗接种相关新发及复发肾小球病研究进展[J]. 浙江大学学报(医学版), 2021, 50(4): 524-528.
[9] 韩连书. 新生儿遗传病基因筛查技术及相关疾病[J]. 浙江大学学报(医学版), 2021, 50(4): 429-435.
[10] 胡茫莎,韦树丽,周武源,王苹莉. 新生儿Fc受体基础研究和临床应用进展[J]. 浙江大学学报(医学版), 2021, 50(4): 537-544.
[11] 胡靖依,王青青,刘杨. 蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 396-402.
[12] 葛瀛洲,刘欣梅,黄荷凤. 沉默信息调节因子家族参与病理妊娠的研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 335-344.
[13] 王锦涛,黄蕾,魏丽丽,陈炜. 重复经颅磁刺激治疗阿尔茨海默病患者的疗效影响因素[J]. 浙江大学学报(医学版), 2021, 50(3): 383-389.
[14] 庄文雯,杨咏琪,李洪亮,梁景岩. 动脉粥样硬化过程中核因子E2相关因子2对血管平滑肌细胞的调控作用[J]. 浙江大学学报(医学版), 2021, 50(3): 390-395.
[15] 朱锋,项迎春,曾玲晖. 线粒体沉默信息调节因子家族在癫痫发生发展中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 403-408.