综述 |
|
|
|
|
表观遗传修饰在神经退行性变性疾病中的作用研究进展 |
曲文政1,庄英粮1,2,李学坤1,2,*( ) |
1.浙江大学医学院附属儿童医院 国家儿童健康与疾病临床医学研究中心 国家儿童区域医疗中心,浙江 杭州 310052 2.浙江大学转化医学研究院,浙江 杭州 310029 |
|
The roles of epigenetic modifications in neurodegenerative diseases |
QU Wenzheng1,ZHUANG Yingliang1,2,LI Xuekun1,2,*( ) |
1. Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China; 2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China |
1 |
LIX, JINP. Roles of small regulatory RNAs in determining neuronal identity[J]Nat Rev Neurosci, 2010, 11( 5): 329-338.
doi: 10.1038/nrn2739
|
2 |
YAOB, CHRISTIANK M, HEC, et al.Epigenetic mechanisms in neurogenesis[J]Nat Rev Neurosci, 2016, 17( 9): 537-549.
doi: 10.1038/nrn.2016.70
|
3 |
GREENBERG M V C, BOURC’HIS D. The diverse roles of DNA methylation in mammalian development and disease[J]. Nat Rev Mol Cell Biol, 2019, 20(10):590-670
|
4 |
ARMSTRONGM J, JINY, ALLENE G, et al.Diverse and dynamic DNA modifications in brain and diseases[J]Hum Mol Genet, 2019, 28( R2): R241-R253.
doi: 10.1093/hmg/ddz179
|
5 |
JONESP A. Functions of DNA methylation: islands, start sites, gene bodies and beyond[J]Nat Rev Genet, 2012, 13( 7): 484-492.
doi: 10.1038/nrg3230
|
6 |
HALDERR, HENNIONM, VIDALR O, et al.DNA methylation changes in plasticity genes accompany the formation and maintenance of memory[J]Nat Neurosci, 2016, 19( 1): 102-110.
doi: 10.1038/nn.4194
|
7 |
GREENBERGM, BOURC’HISD. The diverse roles of DNA methylation in mammalian development and disease[J]Nat Rev Mol Cell Biol, 2019, 20( 10): 590-607.
doi: 10.1038/s41580-019-0159-6
|
8 |
TAHILIANIM, KOHK P, SHENY, et al.Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]Science, 2009, 324( 5929): 930-935.
doi: 10.1126/science.1170116
|
9 |
KRIAUCIONISS, HEINTZN. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain[J]Science, 2009, 324( 5929): 929-930.
doi: 10.1126/science.1169786
|
10 |
GUT P, GUOF, YANGH, et al.The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes[J]Nature, 2011, 477( 7366): 606-610.
doi: 10.1038/nature10443
|
11 |
ITOS, D’ALESSIOA C, TARANOVAO V, et al.Role of TET proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification[J]Nature, 2010, 466( 7310): 1129-1133.
doi: 10.1038/nature09303
|
12 |
KOHLIR M, ZHANGY. TET enzymes, TDG and the dynamics of DNA demethylation[J]Nature, 2013, 502( 7472): 472-479.
doi: 10.1038/nature12750
|
13 |
WUX, ZHANGY. TET-mediated active DNA demethylation: mechanism, function and beyond[J]Nat Rev Genet, 2017, 18( 9): 517-534.
doi: 10.1038/nrg.2017.33
|
14 |
SZULWACHK E, LIX, LIY, et al.5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging[J]Nat Neurosci, 2011, 14( 12): 1607-1616.
doi: 10.1038/nn.2959
|
15 |
LISTERR, MUKAMELE A, NERYJ R, et al.Global epigenomic reconfiguration during mammalian brain development[J]Science, 2013, 341( 6146): 1237905.
doi: 10.1126/science.1237905
|
16 |
SUNW, ZANGL, SHUQ, et al.From development to diseases: the role of 5hmC in brain[J]Genomics, 2014, 104( 5): 347-351.
doi: 10.1016/j.ygeno.2014.08.021
|
17 |
KAASG A, ZHONGC, EASOND E, et al.TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation[J]Neuron, 2013, 79( 6): 1086-1093.
doi: 10.1016/j.neuron.2013.08.032
|
18 |
ZHANGR R, CUIQ Y, MURAIK, et al.Tet1 regulates adult hippocampal neurogenesis and cognition[J]Cell Stem Cell, 2013, 13( 2): 237-245.
doi: 10.1016/j.stem.2013.05.006
|
19 |
LIX, YAOB, CHENL, et al.Ten-eleven translocation 2 interacts with forkhead box O3 and regulates adult neurogenesis[J]Nat Commun, 2017, 8( 1): 15903.
doi: 10.1038/ncomms15903
|
20 |
YUH, SUY, SHINJ, et al.TET3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair[J]Nat Neurosci, 2015, 18( 6): 836-843.
doi: 10.1038/nn.4008
|
21 |
GO?ASZEWSKAA, BIKW, MOTYLT, et al.Bridging the gap between Alzheimer’s disease and Alzheimer’s-like diseases in animals[J]Int J Mol Sci, 2019, 20( 7): 1664.
doi: 10.3390/ijms20071664
|
22 |
DI FRANCESCOA, AROSIOB, FALCONIA, et al.Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells[J]Brain Behav Immun, 2015, 139-144.
doi: 10.1016/j.bbi.2014.11.002
|
23 |
HüLSA, ROBINSC, CONNEELYK N, et al.Brain DNA methylation patterns in CLDN5 associated with cognitive decline[J]Biol Psychiatry, 2021, online,
doi: 10.1016/j.biopsych.2021.01.015
|
24 |
MAS L, TANGN L S, LAML C W. Promoter methylation and gene expression of Pin1 associated with the risk of Alzheimer’s disease in southern Chinese[J]Curr Alzheimer Res, 2021, 17( 13): 1232-1237.
doi: 10.2174/1567205018666210208163946
|
25 |
SHUL, SUNW, LIL, et al.Genome-wide alteration of 5-hydroxymenthylcytosine in a mouse model of Alzheimer’s disease[J]BMC Genomics, 2016, 17( 1): 381.
doi: 10.1186/s12864-016-2731-1
|
26 |
BERNSTEINA I, LINY, STREETR C, et al.5-Hydroxymethylation-associated epigenetic modifiers of Alzheimer’s disease modulate tau-induced neurotoxicity[J]Hum Mol Genet, 2016, 25( 12): 2437.
doi: 10.1093/hmg/ddw109
|
27 |
GONTIERG, IYERM, SHEAJ M, et al.TET2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brain[J]Cell Rep, 2018, 22( 8): 1974-1981.
doi: 10.1016/j.celrep.2018.02.001
|
28 |
ZHANGY, ZHANGZ, LIL, et al.Selective loss of 5hmC promotes neurodegeneration in the mouse model of Alzheimer’s disease[J]FASEB J, 2020, 34( 12): 16364-16382.
doi: 10.1096/fj.202001271R
|
29 |
KUEHNERJ N, CHENJ, BRUGGEMANE C, et al.5-hydroxymethylcytosine is dynamically regulated during forebrain organoid development and aberrantly altered in Alzheimer’s disease[J]Cell Rep, 2021, 35( 4): 109042.
doi: 10.1016/j.celrep.2021.109042
|
30 |
JANKOVICJ, TANE K. Parkinson’s disease: etiopathogenesis and treatment[J]J Neurol Neurosurg Psychiatry, 2020, 91( 8): 795-808.
doi: 10.1136/jnnp-2019-322338
|
31 |
KAUTO, KUCHELMEISTERK, MOEHLC, et al.5-methylcytosine and 5-hydroxymethylcytosine in brains of patients with multiple system atrophy and patients with Parkinson’s disease[J]J Chem Neuroanat, 2019, 41-48.
doi: 10.1016/j.jchemneu.2018.12.005
|
32 |
MATSUMOTOL, TAKUMAH, TAMAOKAA, et al.CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease[J/OL]PLoS One, 2010, 5( 11): e15522.
doi: 10.1371/journal.pone.0015522
|
33 |
DESPLATSP, SPENCERB, COFFEEE, et al.α-synuclein sequesters Dnmt1 from the nucleus[J]J Biol Chem, 2011, 286( 11): 9031-9037.
doi: 10.1074/jbc.C110.212589
|
34 |
SCHMITTI, KAUTO, KHAZNEHH, et al.L-dopa increasesα-synuclein DNA methylation in Parkinson’s disease patients in vivo and in vitro[J]Mov Disord, 2015, 30( 13): 1794-1801.
doi: 10.1002/mds.26319
|
35 |
KANTORB, TAGLIAFIERROL, GUJ, et al.Downregulation of SNCA expression by targeted editing of DNA methylation: a potential strategy for precision therapy in PD[J]Mol Ther, 2018, 26( 11): 2638-2649.
doi: 10.1016/j.ymthe.2018.08.019
|
36 |
WUT T, LIUT, LIX, et al.TET2 - mediated Cdkn2A DNA hydroxymethylation in midbrain dopaminergic neuron injury of Parkinson’s disease[J]Hum Mol Genet, 2020, 29( 8): 1239-1252.
doi: 10.1093/hmg/ddaa022
|
37 |
MARSHALLL L, KILLINGERB A, ENSINKE, et al.Epigenomic analysis of Parkinson’s disease neurons identifies TET2 loss as neuroprotective[J]Nat Neurosci, 2020, 23( 10): 1203-1214.
doi: 10.1038/s41593-020-0690-y
|
38 |
NGC W, YILDIRIMF, YAPY S, et al.Extensive changes in DNA methylation are associated with expression of mutant huntingtin[J]Proc Natl Acad Sci U S A, 2013, 110( 6): 2354-2359.
doi: 10.1073/pnas.1221292110
|
39 |
KERSCHBAMERE, BIAGIOLIM. Huntington’s disease as neurodevelopmental disorder: altered chromatin regulation, coding, and non-coding RNA transcription[J]Front Neurosci, 2015, 509.
doi: 10.3389/fnins.2015.00509
|
40 |
MOLLICAP A, REIDJ A, OGLER C, et al.DNA methylation leads to DNA repair gene down-regulation and trinucleotide repeat expansion in patient-derived huntington disease cells[J]Am J Pathol, 2016, 186( 7): 1967-1976.
doi: 10.1016/j.ajpath.2016.03.014
|
41 |
WANGF, YANGY, LINX, et al.Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease[J]Hum Mol Genet, 2013, 22( 18): 3641-3653.
doi: 10.1093/hmg/ddt214
|
42 |
VILLAR-MENéNDEZI, BLANCHM, TYEBJIS, et al.Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington’s disease[J]Neuromolecular Med, 2013, 15( 2): 295-309.
doi: 10.1007/s12017-013-8219-0
|
43 |
JAKOVCEVSKIM, AKBARIANS. Epigenetic mechanisms in neurological disease[J]Nat Med, 2012, 18( 8): 1194-1204.
doi: 10.1038/nm.2828
|
44 |
MARZIS J, LEUNGS K, RIBARSKAT, et al.A histone acetylome-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex[J]Nat Neurosci, 2018, 21( 11): 1618-1627.
doi: 10.1038/s41593-018-0253-7
|
45 |
NATIVIOR, LANY, DONAHUEG, et al.An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease[J]Nat Genet, 2020, 52( 10): 1024-1035.
doi: 10.1038/s41588-020-0696-0
|
46 |
CHOIH, KIMH J, YANGJ, et al.Acetylation changes tau interactome to degrade tau in Alzheimer’s disease animal and organoid models[J/OL]Aging Cell, 2020, 19( 1): e13081.
doi: 10.1111/acel.13081
|
47 |
JANCZURAK J, VOLMARC H, SARTORG C, et al.Inhibition of HDAC3 reverses Alzheimer’s disease-related pathologies in vitro and in the 3xTg-AD mouse model[J/OL]Proc Natl Acad Sci U S A, 2018, 115( 47): E11148-E11157.
doi: 10.1073/pnas.1805436115
|
48 |
MASTROENID, DELVAUXE, NOLZJ, et al.Aberrant intracellular localization of H3k4me3 demonstrates an early epigenetic phenomenon in Alzheimer’s disease[J]Neurobiol Aging, 2015, 36( 12): 3121-3129.
doi: 10.1016/j.neurobiolaging.2015.08.017
|
49 |
GJONESKAE, PFENNINGA R, MATHYSH, et al.Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease[J]Nature, 2015, 518( 7539): 365-369.
doi: 10.1038/nature14252
|
50 |
PARKG, TANJ, GARCIAG, et al.Regulation of histone acetylation by autophagy in Parkinson disease[J]J Biol Chem, 2016, 291( 7): 3531-3540.
doi: 10.1074/jbc.M115.675488
|
51 |
LIB, YANGY, WANGY, et al.Acetylation of NDUFV1 induced by a newly synthesized HDAC6 inhibitor HGC rescues dopaminergic neuron loss in Parkinson models[J]iScience, 2021, 24( 4): 102302.
doi: 10.1016/j.isci.2021.102302
|
52 |
GUHATHAKURTAS, KIMJ, ADAMSL, et al.Targeted attenuation of elevated histone marks at SNCA alleviates α‐synuclein in Parkinson’s disease[J/OL]EMBO Mol Med, 2021, 13( 2): e12188.
doi: 10.15252/emmm.202012188
|
53 |
CHENX, XIEC, TIANW, et al.Parkinson’s disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging[J]Mol Neurodegener, 2020, 15( 1): 12.
doi: 10.1186/s13024-020-00360-0
|
54 |
KOVALENKOM, ERDINS, ANDREWM A, et al.Histone deacetylase knockouts modify transcription, CAG instability and nuclear pathology in Huntington disease mice[J/OL]eLife, 2020, e55911.
doi: 10.7554/eLife.55911
|
55 |
MERIENNEN, MEUNIERC, SCHNEIDERA, et al.Cell-type-specific gene expression profiling in adult mouse brain reveals normal and disease-state signatures[J]Cell Rep, 2019, 26( 9): 2477-2493.e9.
doi: 10.1016/j.celrep.2019.02.003
|
56 |
YILDIRIMF, NGC W, KAPPESV, et al.Early epigenomic and transcriptional changes reveal Elk-1 transcription factor as a therapeutic target in Huntington’s disease[J]Proc Natl Acad Sci U S A, 2019, 116( 49): 24840-24851.
doi: 10.1073/pnas.1908113116
|
57 |
LIS, MASONC E. The pivotal regulatory landscape of RNA modifications[J]Annu Rev Genom Hum Genet, 2014, 15( 1): 127-150.
doi: 10.1146/annurev-genom-090413-025405
|
58 |
MEYERK D, PATILD P, ZHOUJ, et al.5’ UTR m6A promotes Cap-independent translation[J]Cell, 2015, 163( 4): 999-1010.
doi: 10.1016/j.cell.2015.10.012
|
59 |
DOMINISSINID, MOSHITCH-MOSHKOVITZS, SCHWARTZS, et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]Nature, 2012, 485( 7397): 201-206.
doi: 10.1038/nature11112
|
60 |
LIUJ, YUEY, HAND, et al.A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]Nat Chem Biol, 2014, 10( 2): 93-95.
doi: 10.1038/nchembio.1432
|
61 |
JIAG, FUY, ZHAOX, et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]Nat Chem Biol, 2011, 7( 12): 885-887.
doi: 10.1038/nchembio.687
|
62 |
ZHENGG, DAHLJ A, NIUY, et al.ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]Mol Cell, 2013, 49( 1): 18-29.
doi: 10.1016/j.molcel.2012.10.015
|
63 |
WANGX, ZHAOB S, ROUNDTREEI A, et al.N6-methyladenosine modulates messenger RNA translation efficiency[J]Cell, 2015, 161( 6): 1388-1399.
doi: 10.1016/j.cell.2015.05.014
|
64 |
FRYEM, JAFFREYS R, PANT, et al.RNA modifications: what have we learned and where are we headed?[J]Nat Rev Genet, 2016, 17( 6): 365-372.
doi: 10.1038/nrg.2016.47
|
65 |
FUY, DOMINISSINID, RECHAVIG, et al.Gene expression regulation mediated through reversible m6A RNA methylation[J]Nat Rev Genet, 2014, 15( 5): 293-306.
doi: 10.1038/nrg3724
|
66 |
BATISTAP J. The RNA modification N6-methyladenosine and its implications in human disease[J]Genomics Proteomics BioInf, 2017, 15( 3): 154-163.
doi: 10.1016/j.gpb.2017.03.002
|
67 |
SHAFIKA M, ZHANGF, GUOZ, et al.N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease[J]Genome Biol, 2021, 22( 1): 17.
doi: 10.1186/s13059-020-02249-z
|
68 |
HANM, LIUZ, XUY, et al.Abnormality of m6A mRNA methylation is involved in Alzheimer’s disease[J]Front Neurosci, 2020, 98.
doi: 10.3389/fnins.2020.00098
|
69 |
FOOJ N, TANL C, IRWANI D, et al.Genome-wide association study of Parkinson’s disease in east Asians[J]Hum Mol Genet, 2017, 26( 1): 226-232.
doi: 10.1093/hmg/ddw379
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|