Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (4): 524-528    DOI: 10.3724/zdxbyxb-2021-0156
2019冠状病毒病     
2019冠状病毒病疫苗接种相关新发及复发肾小球病研究进展
刘飞(),冯春月,毛建华,傅海东()
浙江大学医学院附属儿童医院 国家儿童健康与疾病临床医学研究中心 国家儿童区域医疗中心,浙江 杭州 310052
New-onset and relapsing glomerular diseases related to COVID-19 vaccination
LIU Fei(),FENG Chunyue,MAO Jianhua,FU Haidong()
Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
 全文: PDF(1979 KB)   HTML( 8 )
摘要:

作为控制疫情的重要手段,2019冠状病毒病(COVID-19)疫苗已经在全球范围内广泛接种,但疫苗接种引起的新发及复发肾小球病也引起了肾脏病领域研究者的高度关注。根据全球范围的报道,信使RNA疫苗与灭活疫苗都有可能引起新发及复发肾小球病;首剂及第2剂接种后都有可能发病;新发肾小球病以微小病变为主,大多对激素敏感;复发病例亦预后良好,部分可自行缓解。疫苗引起的体液、细胞免疫反应可能是导致新发及复发肾小球病的原因。本文总结了COVID-19疫苗接种相关的新发及复发肾小球病病例,并为肾脏病患者接种COVID-19疫苗提供了建议。

关键词: 2019冠状病毒病疫苗不良反应肾小球病新发复发综述    
Abstract:

COVID-19 vaccine, as one of the critical measures to control the pandemic, has been administered in nearly all countries. However, the new-onset and relapsing glomerular diseases associated with COVID-19 vaccination have become a new concern. Both mRNA vaccine and inactivated vaccine may cause new-onset and relapsing glomerular diseases; these diseases would occur after the first dose vaccination or the second dose. New-onset glomerular disease is mainly minimal change glomerulopathy, which is mostly sensitive to steroid, while relapsing cases have good prognosis, and some cases can be spontaneously remitted. The pathogenesis of these vaccine-associated diseases is possibly due to the humoral and cellular immune responses. In this article, we provide a general review of the new-onset and relapsing glomerular diseases related to COVID-19 vaccination, and make suggestions for patients with kidney diseases to receive COVID-19 vaccination.

Key words: Coronavirus disease 2019    Vaccines    Adverse reaction    Glomerulopathy    New-onset    Relapsing    Review
收稿日期: 2021-06-02 出版日期: 2021-11-01
CLC:  R511  
基金资助: 浙江省重点研发计划(2019C03028)
通讯作者: 傅海东     E-mail: alexdevin@163.com;fhdhz@163.com
作者简介: 刘 飞,硕士研究生,主要从事儿童肾病综合征、多囊肾的机制研究;E-mail:alexdevin@163.com;https://orcid.org/0000-0001-9098-9155
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘飞
冯春月
毛建华
傅海东

引用本文:

刘飞,冯春月,毛建华,傅海东. 2019冠状病毒病疫苗接种相关新发及复发肾小球病研究进展[J]. 浙江大学学报(医学版), 2021, 50(4): 524-528.

LIU Fei,FENG Chunyue,MAO Jianhua,FU Haidong. New-onset and relapsing glomerular diseases related to COVID-19 vaccination. J Zhejiang Univ (Med Sci), 2021, 50(4): 524-528.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0156        http://www.zjujournals.com/med/CN/Y2021/V50/I4/524

1 LIY, TENCHOVR, SMOOTJ, et al.A comprehensive review of the global efforts on COVID-19 vaccine development[J]ACS Cent Sci, 2021, 7( 4): 512-533.
doi: 10.1021/acscentsci.1c00120
2 World Health Organization. Draft landscape and tracker of COVID-19 candidate vaccines[EB/OL]. [2021-05-25]. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
3 CARNEIROD C, SOUSAJ D, MONTEIRO-CUNHAJ P. The COVID-19 vaccine development: a pandemic paradigm[J]Virus Res, 2021, 198454.
doi: 10.1016/j.virusres.2021.198454
4 SCHULTZN H, S?RVOLLI H, MICHELSENA E, et al.Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination[J]N Engl J Med, 2021, 384( 22): 2124-2130.
doi: 10.1056/NEJMoa2104882
5 BOZKURTB, KAMATI, HOTEZP J. Myocarditis with COVID-19 mRNA vaccines[J]Circulation, 2021, 144( 6): 471-484.
doi: 10.1161/CIRCULATIONAHA.121.056135
6 CASTELLSM C, PHILLIPSE J. Maintaining safety with SARS-CoV-2 vaccines[J]N Engl J Med, 2021, 384( 7): 643-649.
doi: 10.1056/NEJMra2035343
7 FORMEISTERE J, CHIENW, AGRAWALY, et al.Preliminary analysis of association between COVID-19 vaccination and sudden hearing loss using US centers for disease control and prevention vaccine adverse events reporting system data[J]JAMA Otolaryngol Head Neck Surg, 2021, 147( 7): 674-676.
doi: 10.1001/jamaoto.2021.0869
8 LEBEDEVL, SAPOJNIKOVM, WECHSLERA, et al.Minimal change disease following the Pfizer-BioNTech COVID-19 vaccine[J]Am J Kidney Dis, 2021, 78( 1): 142-145.
doi: 10.1053/j.ajkd.2021.03.010
9 D’AGATIV D, KUDOSES, BOMBACKA S, et al.Minimal change disease and acute kidney injury following the Pfizer-BioNTech COVID-19 vaccine[J]Kidney Int, 2021, 100( 2): 461-463.
doi: 10.1016/j.kint.2021.04.035
10 MAASR J, GIANOTTENS, VAN DER MEIJDENW A G. An additional case of minimal change disease following the Pfizer-BioNTech COVID-19 vaccine[J]Am J Kidney Dis, 2021, 78( 2): 312.
doi: 10.1053/j.ajkd.2021.05.003
11 HOLZWORTHA, COUCHOTP, CRUZ-KNIGHTW, et al.Minimal change disease following the moderna mRNA-1273 SARS-CoV-2 vaccine[J]Kidney Int, 2021, 100( 2): 463-464.
doi: 10.1016/j.kint.2021.05.007
12 AYD?NM F, Y?LD?ZA, ORU?A, et al.Relapse of primary membranous nephropathy after inactivated SARS-CoV-2 virus vaccination[J]Kidney Int, 2021, 100( 2): 464-465.
doi: 10.1016/j.kint.2021.05.001
13 KERVELLAD, JACQUEMONTL, CHAPELET-DEBOUTA, et al.Minimal change disease relapse following SARS-CoV-2 mRNA vaccine[J]Kidney Int, 2021, 100( 2): 457-458.
doi: 10.1016/j.kint.2021.04.033
14 KOMABAH, WADAT, FUKAGAWAM. Relapse of minimal change disease following the Pfizer-BioNTech COVID-19 vaccine[J]Am J Kidney Dis, 2021, 78( 3): 469-470.
doi: 10.1053/j.ajkd.2021.05.006
15 RAHIMS E G, LINJ T, WANGJ C. A case of gross hematuria and IgA nephropathy flare-up following SARS-CoV-2 vaccination[J]Kidney Int, 2021, 100( 1): 238.
doi: 10.1016/j.kint.2021.04.024
16 NEGREAL, ROVINB H. Gross hematuria following vaccination for severe acute respiratory syndrome coronavirus 2 in 2 patients with IgA nephropathy[J]Kidney Int, 2021, 99( 6): 1487.
doi: 10.1016/j.kint.2021.03.002
17 XUS, YANGK, LIR, et al.mRNA vaccine era—mechanisms, drug platform and clinical prospection[J]Int J Mol Sci, 2020, 21( 18): 6582.
doi: 10.3390/ijms21186582
18 SAHINU, MUIKA, DERHOVANESSIANE, et al.COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses[J]Nature, 2020, 586( 7830): 594-599.
doi: 10.1038/s41586-020-2814-7
19 VIVARELLI M, MASSELLA L, RUGGIERO B, et al. Minimal change disease[J]. Clin J Am Soc Nephrol, 2017, 12(2): 332-345
20 KIELSTEIN J T, TERMüHLEN L, SOHN J, et al. Minimal change nephrotic syndrome in a 65-year-old patient following influenza vaccination[J]. Clin Nephrol, 2000, 54(3): 246-248
21 GUTIERREZ S, DOTTO B, PETITI J P, et al. Minimal change disease following influenza vaccination and acute renal failure: just a coincidence?[J]. Nefrologia, 2012, 32(3): 414-415
22 LAMBERTE M, LIEBLINGA, GLUSACE, et al.Henoch-schonlein purpura following a meningococcalvaccine[J/OL]Pediatrics, 2003, 112( 6): e491-e494.
doi: 10.1542/peds.112.6.e491
23 MCNALLYA, MCGREGORD, SEARLEM, et al.Henoch-Schonlein purpura in a renal transplant recipient with prior IgA nephropathy following influenza vaccination[J]Clin Kidney J, 2013, 6( 3): 313-315.
doi: 10.1093/ckj/sft029
24 SEGALY, SHOENFELDY. Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction[J]Cell Mol Immunol, 2018, 15( 6): 586-594.
doi: 10.1038/cmi.2017.151
25 SETTEA, CROTTYS. Adaptive immunity to SARS-CoV-2 and COVID-19[J]Cell, 2021, 184( 4): 861-880.
doi: 10.1016/j.cell.2021.01.007
26 SOYM, KESERG, ATAGUNDUZP, et al.A practical approach for vaccinations including COVID-19 in autoimmune/autoinflammatory rheumatic diseases: a non-systematic review[J]Clin Rheumatol, 2021, 40( 9): 3533-3545.
doi: 10.1007/s10067-021-05700-z
27 DAL-RéR, BEKKERL G, GLUUDC, et al.Ongoing and future COVID-19 vaccine clinical trials: challenges and opportunities[J]Lancet Infect Dis, 2021,
doi: 10.1016/S1473-3099(21)00263-2
28 KRONBICHLERA, ANDERSH J, FERNANDEZ-JUáREZG M, et al.Recommendations for the use of COVID-19 vaccines in patients with immune-mediated kidney diseases[J]Nephrol Dial Transplant, 2021, 36( 7): 1160-1168.
doi: 10.1093/ndt/gfab064
29 中华医学会感染病学分会, 中华医学会风湿病学分会. 特殊人群(慢性肝病、结核病和风湿免疫病患者)新型冠状病毒疫苗接种专家建议[J]. 中华传染病杂志, 2021, 39(7): 398-403
Chinese Society of Infectious Diseases, Chinese Society of Rheumatology. Expert recommendation on severe acute respiratory syndrome coronavirus 2 vaccination in patients with chronic liver diseases, tuberculosis or rheumatoid diseases[J]. Chinese Journal of Infectious Diseases, 2021, 39(7): 398-403. (in Chinese)
[1] 唐玥,孔元原. 遗传性酪氨酸血症Ⅰ型及其筛查和诊治进展[J]. 浙江大学学报(医学版), 2021, 50(4): 514-523.
[2] 韩连书. 新生儿遗传病基因筛查技术及相关疾病[J]. 浙江大学学报(医学版), 2021, 50(4): 429-435.
[3] 胡靖依,王青青,刘杨. 蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 396-402.
[4] 葛瀛洲,刘欣梅,黄荷凤. 沉默信息调节因子家族参与病理妊娠的研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 335-344.
[5] 王锦涛,黄蕾,魏丽丽,陈炜. 重复经颅磁刺激治疗阿尔茨海默病患者的疗效影响因素[J]. 浙江大学学报(医学版), 2021, 50(3): 383-389.
[6] 庄文雯,杨咏琪,李洪亮,梁景岩. 动脉粥样硬化过程中核因子E2相关因子2对血管平滑肌细胞的调控作用[J]. 浙江大学学报(医学版), 2021, 50(3): 390-395.
[7] 朱锋,项迎春,曾玲晖. 线粒体沉默信息调节因子家族在癫痫发生发展中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 403-408.
[8] 旷文静,罗小波,王冏珂,曾昕. 梅–罗综合征患者的表征及其诊治[J]. 浙江大学学报(医学版), 2021, 50(2): 148-154.
[9] 王晨宇,王英男,汪存艺,施洁珺,王慧明. 组织工程修复颞下颌关节的关键因素研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 212-221.
[10] 任超杰,钟丹妮,周民. 微藻在生物医学领域的研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 261-266.
[11] 应颖超,江佩芳. 瞬时受体电位 M2 型离子通道在神经系统疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 267-276.
[12] 邵一鸣,苏力德,郝睿,王茜茜,那仁满都拉. 乙型肝炎病毒诱发肝细胞癌分子机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 113-122.
[13] 韩恒毅,冯帆,李海涛. 表观遗传与肿瘤代谢研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 1-16.
[14] 陈菲,虞敏,钟永红,华雯,黄华琼. 中性粒细胞在哮喘中的地位和作用[J]. 浙江大学学报(医学版), 2021, 50(1): 123-130.
[15] 颜京,张婷婷,赵葵. 核医学分子影像探针应用于神经内分泌肿瘤的研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 131-137.