专题报道 |
|
|
|
|
组织工程修复颞下颌关节的关键因素研究进展 |
王晨宇1( ),王英男2,汪存艺1,施洁珺2,王慧明2,*( ) |
1.浙江大学医学院,浙江 杭州 310058 2.浙江大学医学院附属口腔医院 浙江大学口腔医学院 浙江省口腔生物医学重点实验室,浙江 杭州 310016 3.浙江大学医学院附属口腔医院,浙江 杭州 310006 |
|
Research progress on tissue engineering in repairing temporo-mandibular joint |
WANG Chenyu1( ),WANG Yingnan2,WANG Cunyi1,SHI Jiejun2,WANG Huiming2,*( ) |
1. Zhejiang University School of Medicine, Hangzhou 310058, China; 2. Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China |
引用本文:
王晨宇,王英男,汪存艺,施洁珺,王慧明. 组织工程修复颞下颌关节的关键因素研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 212-221.
WANG Chenyu,WANG Yingnan,WANG Cunyi,SHI Jiejun,WANG Huiming. Research progress on tissue engineering in repairing temporo-mandibular joint. J Zhejiang Univ (Med Sci), 2021, 50(2): 212-221.
链接本文:
http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0118
或
http://www.zjujournals.com/med/CN/Y2021/V50/I2/212
|
1 |
PETER E D. Functional occlusion: from TMJ to smile design[M]. Philadelphia: Elsevier Mosby, 2007: 35
|
2 |
SIDEBOTTOMA J. Current thinking in temporomandibular joint management[J]Br J Oral Maxillofac Surg, 2009, 47( 2): 91-94.
doi: 10.1016/j.bjoms.2008.08.012
|
3 |
李春洁, 张一帆, 贾源源, 等. 透明质酸钠治疗颞下颌关节结构紊乱临床随机对照试验的系统评价[J]. 华西口腔医学杂志, 2011, 29(5): 488-493 LI Chunjie, ZHANG Yifan, JIA Yuanyuan, et al. Systematic review of the randomized controlled trial of sodium hyaluronate in the treatment of structural disorders of the temporomandibular joint[J]. West China Journal of Stomatology, 2011, 29(5): 488-493. (in Chinese)
|
4 |
DYMH, BOWLERD, ZEIDANJ. Pharmacologic treatment for temporomandibular disorders[J]Dent Clin North Am, 2016, 60( 2): 367-379.
doi: 10.1016/j.cden.2015.11.012
|
5 |
MACHADOE, BONOTTOD, CUNALIP A. Intra-articular injections with corticosteroids and sodium hyaluronate for treating temporomandibular joint disorders: a systematic review[J]Dental Press J Orthod, 2013, 18( 5): 128-133.
doi: 10.1590/s2176-94512013000500021
|
6 |
张玲阁, 王章正, 张 睿, 等. 关节镜手术治疗颞下颌关节紊乱病的疗效评价[J]. 医药论坛杂志, 2017, 38(4): 96-97 ZHANG Lingge, WANG Zhangzheng, ZHANG Rui, et al. Efficacy evaluation of arthroscopic surgery for temporomandibular joint disorders[J]. Journal of Medical Forum, 2017, 38(4): 96-97. (in Chinese)
|
7 |
WUY, GONGZ, LIJ, et al.The pilot study of fibrin with temporomandibular joint derived synovial stem cells in repairing TMJ disc perforation[J]Biomed Res Int, 2014, 454-021.
doi: 10.1155/2014/454021
|
8 |
WANGK H, CHANW P, CHIUL H, et al.Histological and immunohistochemical analyses of repair of the disc in the rabbit temporomandibular joint using a collagen template[J]Materials, 2017, 10( 8): 924.
doi: 10.3390/ma10080924
|
9 |
LIUX W, HUJ, MANC, et al.Insulin-like growth factor-1 suspended in hyaluronan improves cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint[J]Int J Oral Maxillofac Surg, 2011, 40( 2): 184-190.
doi: 10.1016/j.ijom.2010.10.003
|
10 |
KALPAKCIK N, KIME J, ATHANASIOUK A. Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering[J]Acta Biomater, 2011, 7( 4): 1710-1718.
doi: 10.1016/j.actbio.2010.12.015
|
11 |
WangC H, WangS, ZhangB. Layering poly (lactic-co-glycolic acid)-based electrospun membranes and co-culture cell sheets for engineering temporomandibular joint disc[J]J Biol Regul Homeost Agents, 2018, 32( 1): 55-61.
doi: 10.1002/biot.201700203
|
12 |
DORMERN H, BUSAIDYK, BERKLANDC J, et al.Osteochondral interface regeneration of rabbit mandibular condyle with bioactive signal gradients[J/OL]J Oral Maxillofac Surg, 2011, 69( 6): e50-e57.
doi: 10.1016/j.joms.2010.12.049
|
13 |
LEGEMATEK, TARAFDERS, JUNY, et al.Engineering human TMJ discs with protein-releasing 3D-printed scaffolds[J]J Dent Res, 2016, 95( 7): 800-807.
doi: 10.1177/0022034516642404
|
14 |
TARAFDERS, KOCHA, JUNY, et al.Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration[J]Biofabrication, 2016, 8( 2): 025003.
doi: 10.1088/1758-5090/8/2/025003
|
15 |
RONALDS, MILLSD K. Fibrochondrocyte growth and functionality on TiO2 nanothin films[J]J Funct Biomater, 2016, 7( 2): 15.
doi: 10.3390/jfb7020015
|
16 |
KOMMIREDDYD S, SRIRAMS M, LVOVY M, et al.Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films[J]Biomaterials, 2006, 27( 24): 4296-4303.
doi: 10.1016/j.biomaterials.2006.03.042
|
17 |
MOURAC, TRINDADED, VIEIRAM, et al.Multi-material implants for temporomandibular joint disc repair: tailored additive manufacturing production[J]Front Bioeng Biotechnol, 2020,
doi: 10.3389/fbioe.2020.00342
|
18 |
刘春栋, 张志光, 苏 凯, 等. 透明质酸改性聚乳酸支架组织工程软骨的构建[J]. 广东牙病防治, 2012, 20(3): 124-129 LIU Chundong, ZHANG Zhiguang, SU Kai, et al. Construction of tissue engineering cartilage with modified polylactic acid scaffold using hyaluronic acid[J]. Journal of Dental Prevention and Treatment, 2012, 20(3): 124-129. (in Chinese)
|
19 |
DIMATTEOR, DARLINGN J, SEGURAT. In situforming injectable hydrogels for drug delivery and wound repair[J]Adv Drug Deliver Rev, 2018, 167-184.
doi: 10.1016/j.addr.2018.03.007
|
20 |
ZHOUT, LIX, LIG, et al.Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair[J]Sci Rep, 2017, 7( 1): 10553.
doi: 10.1038/s41598-017-11322-w
|
21 |
MREDHAM T I, KITAMURAN, NONOYAMAT, et al.Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone[J]Biomaterials, 2017, 85-95.
doi: 10.1016/j.biomaterials.2017.04.005
|
22 |
RADHAKRISHNANJ, SUBRAMANIANA, KRISHNANU M, et al.Injectable and 3D bioprinted polysaccharide hydrogels:from cartilage to osteochondral tissue engineering[J]Biomacromolecules, 2017, 18( 1): 1-26.
doi: 10.1021/acs.biomac.6b01619
|
23 |
郭延伟, 杨世茂. TGF-β3 转染脂肪干细胞复合 OGP-HA-ChS 支架对兔髁突受损软骨的修复作用[J]. 上海口腔医学, 2018, 27(6): 567-573 GUO Yanwei, YANG Shimao. Effect of TGF-β3 transfected with adipose derived stem cells and OGP-HA-chondroitin sulfate scaffold on repair of condylar cartilage in rabbits[J]. Shanghai Journal of Stomatology, 2018, 27(6): 567-573. (in Chinese)
|
24 |
张广德, 李荣亮, 岳从雷, 等. 腺病毒介导 HGF 转染脂肪干细胞复合温敏型可注射水凝胶对兔颞下颌关节骨关节病髁突软骨的修复作用[J]. 口腔医学研究, 2017, 33(9): 924-927 ZHANG Guangde, LI Rongliang, YUE Conglei, et al. Therapeutic effect of adenovirus-mediated HGF transfection of ADSCs combined with injectable hydrogei on the repair of temporomandibular joint arthritic condylar cartilage in rabbits[J]. Journal of Oral Science Research, 2017, 33(9): 924-927. (in Chinese)
|
25 |
YUANX, WEIY, VILLASANTEA, et al.Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model[J]Biomaterials, 2017, 59-71.
doi: 10.1016/j.biomaterials.2017.04.004
|
26 |
BROWNB N, CHUNGW L, ALMARZAA J, et al.Inductive, scaffold-based, regenerative medicine approach to reconstruction of the temporomandibular joint disk[J]J Oral Maxillofac Surg, 2012, 70( 11): 2656-2668.
doi: 10.1016/j.joms.2011.12.030
|
27 |
JURANC M, DOLWICKM F, MCFETRIDGEP S. Engineered microporosity: enhancing the early regenerative potential of decellularized temporomandibular joint discs[J]Tissue Eng Part A, 2015, 21( 3-4): 829-839.
doi: 10.1089/ten.TEA.2014.0250
|
28 |
MACBARBR F, CHENA L, HUJ C, et al.Engineering functional anisotropy in fibrocartilage neotissues[J]Biomaterials, 2013, 34( 38): 9980-9989.
doi: 10.1016/j.biomaterials.2013.09.026
|
29 |
VAPNIARSKYN, HUWEL W, ARZIB, et al.Tissue engineering toward temporomandibular joint disc regeneration[J]Sci Transl Med, 2018, 10( 446): eaaq1802.
doi: 10.1126/scitranslmed.aaq1802
|
30 |
AHTIAINENK, MAUNOJ, ELL?V, et al.Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc[J]J R Soc Interface, 2013, 10( 85): 20130287.
doi: 10.1098/rsif.2013.0287
|
31 |
BOUSNAKIM, BAKOPOULOUA, PAPADOGIANNID, et al.Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards temporomandibular joint disc regeneration[J]J Mater Sci-Mater Med, 2018, 29( 7): 97.
doi: 10.1007/s10856-018-6109-6
|
32 |
ZHENGY H, SUK, JIANY T, et al.Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs[J]J Tissue Eng Regen Med, 2011, 5( 7): 540-550.
doi: 10.1002/term.346
|
33 |
沈 佩. 胚胎干细胞经外胚层向髁突软骨干细胞定向分化及其软骨损伤修复应用研究[D]. 上海: 上海交通大学, 2019 SHEN Pei. Directional differentiation of embryonic stem cells into condylar cartilage stem cells via ectoderm and its application in cartilage injury repair[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
|
34 |
SUNH, HUANGY, ZHANGL, et al.Co?culture of bone marrow stromal cells and chondrocytes in vivo for the repair of the goat condylar cartilage defects[J]Exp Ther Med, 2018, 16( 4): 2969-2977.
doi: 10.3892/etm.2018.6551
|
35 |
李 祥, 查国庆, 朱双喜, 等. 胶原复合梯度磷酸三钙修复髁突软骨缺损[J/CD]. 中华口腔医学研究杂志(电子版), 2010, 4(3): 239-243 LI Xiang, ZHA Guoqin, ZHU Shuangxi, et al. Reconstruction of temporomandibular joint condylar cartilage defect with Col/TCP[J/CD].Chinese Journal of Stomatological Research (Electronic Edition), 2010, 4 (3): 239-243. (in Chinese)
|
36 |
石 磊, 李轶杰, 赵 萤, 等. NF-κB 在压力调控BMSCs/PRF 修复兔髁突软骨缺损中的作用研究[J]. 牙体牙髓牙周病学杂志, 2015, 25(3): 125-132, 178 SHI Lei, LI Yijie, ZHAO Ying, et al. Role of NF-κB in condylar cartilage defects repair by pressure-regulated BMSCs/PRF in rabbits[J]. Chinese Journal of Conservative Dentistry, 2015, 25(3): 125-132, 178. (in Chinese)
|
37 |
WEIJ, HERRLERT, HAND, et al.Autologous temporomandibular joint reconstruction independent of exogenous additives: a proof-of-concept study for guided self-generation[J]Sci Rep, 2016, 6( 1): 37904.
doi: 10.1038/srep37904
|
38 |
CHINA R, GAOJ, WANGY, et al.Regenerative potential of various soft polymeric scaffolds in the temporomandibular joint condyle[J]J Oral Maxillofac Surg, 2018, 76( 9): 2019-2026.
doi: 10.1016/j.joms.2018.02.012
|
39 |
WANG F, HU Y, HE D, et al. Scaffold-free cartilage cell sheet combined with bone-phase bmscs-scaffold regenerate osteochondral construct in mini-pig model[J]. Am J Transl Res, 2018, 10(10): 2997-3010
|
40 |
DUAN L, LIANG Y, MA B, et al. Epigenetic regulation in chondrocyte phenotype maintenance for cell-based cartilage repair[J]. Am J Transl Res, 2015, 7(11): 2127-2140
|
41 |
ZAKIA A, ZAGHLOULM, HELALM E, et al.Impact of autologous bone marrow-derived stem cells on degenerative changes of articulating surfaces associated with the arthritic temporomandibular joint: an experimental study in rabbits[J]J Oral Maxillofac Surg, 2017, 75( 12): 2529-2539.
doi: 10.1016/j.joms.2017.05.001
|
42 |
XIEX, WANGY, ZHAOC, et al.Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration[J]Biomaterials, 2012, 33( 29): 7008-7018.
doi: 10.1016/j.biomaterials.2012.06.058
|
43 |
DOWTHWAITEG P, BISHOPJ C, REDMANS N, et al.The surface of articular cartilage contains a progenitor cell population[J]J Cell Sci, 2004, 117( 6): 889-897.
doi: 10.1242/jcs.00912
|
44 |
EMBREEM C, CHENM, PYLAWKAS, et al.Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury[J]Nat Commun, 2016, 7( 1): 13073.
doi: 10.1038/ncomms13073
|
45 |
CLEARYM A, VAN OSCHG J V M, BRAMAP A, et al.FGF, TGF β and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells[J]J Tissue Eng Regen Med, 2015, 9( 4): 332-342.
doi: 10.1002/term.1744
|
46 |
VAN CAAMA, MADEJW, GARCIA DE VINUESAA, et al.TGFβ1-induced SMAD2/3 and SMAD1/5 phosphorylation are both ALK5-kinase-dependent in primary chondrocytes and mediated by TAK1 kinase activity[J]Arthritis Res Ther, 2017, 19( 1): 112.
doi: 10.1186/s13075-017-1302-4
|
47 |
YINGB, CHENK, HUJ, et al.Effect of different doses of transforming growth factor-β1 on cartilage and subchondral bone in osteoarthritic temporomandibular joints[J]Bri J Oral Maxillofac Surg, 2013, 51( 3): 241-246.
doi: 10.1016/j.bjoms.2012.05.014
|
48 |
YOONB S, POGUER, OVCHINNIKOVD A, et al.BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways[J]Development, 2006, 133( 23): 4667-4678.
doi: 10.1242/dev.02680
|
49 |
HELLINGMANC A, DAVIDSONE N B, KOEVOETW, et al.Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification[J]Tissue Eng Part A, 2011, 17( 7-8): 1157-1167.
doi: 10.1089/ten.TEA.2010.0043
|
50 |
LIC S, ZHANGX, PéAULTB, et al.Accelerated chondrogenic differentiation of human perivascular stem cells with NELL-1[J]Tissue Eng Part A, 2016, 22( 3-4): 272-285.
doi: 10.1089/ten.TEA.2015.0250
|
51 |
XIAOD, HUJ, CHENK, et al.Protection of articular cartilage by intra-articular injection of NEL-like molecule 1 in temporomandibular joint osteoarthritis[J/OL]J Craniofac Surg, 2012, 23( 1): e55-e58.
doi: 10.1097/SCS.0b013e3182418d02
|
52 |
KüTüKN, BA?B, SOYLUE, et al.Effect of platelet-rich plasma on fibrocartilage, cartilage, and bone repair in temporomandibular joint[J]J Oral Maxillofac Surg, 2014, 72( 2): 277-284.
doi: 10.1016/j.joms.2013.09.011
|
53 |
COSKUNU, CANDIRLIC, KERIMOGLUG, et al.Effect of platelet-rich plasma on temporomandibular joint cartilage wound healing: experimental study in rabbits[J]J Cranio-Maxillofac Surg, 2019, 47( 2): 357-364.
doi: 10.1016/j.jcms.2018.12.004
|
54 |
NITECKA-BUCHTAA, WALCZYNSKA-DRAGONK, KEMPAW M, et al.Platelet-rich plasma intramuscular injections – antinociceptive therapy in myofascial pain within masseter muscles in temporomandibular disorders patients: a pilot study[J]Front Neurol, 2019, 250.
doi: 10.3389/fneur.2019.00250
|
55 |
MAUMUSM, MANFERDINIC, TOUPETK, et al.Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis[J]Stem Cell Res, 2013, 11( 2): 834-844.
doi: 10.1016/j.scr.2013.05.008
|
56 |
ZHANG S, TEO K Y W, CHUAH S J, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials, 2019, 200: 35-47
|
57 |
CUIS J, ZHANGT, FUY, et al.DPSCs attenuate experimental progressive TMJ arthritis by inhibiting the STAT1 pathway[J]J Dent Res, 2020, 99( 4): 446-455.
doi: 10.1177/0022034520901710
|
58 |
OGASAWARAN, KANOF, HASHIMOTON, et al.Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis[J]Osteoarthritis Cartilage, 2020, 28( 6): 831-841.
doi: 10.1016/j.joca.2020.03.010
|
59 |
骆 瑜, 李若涵, 彭友俭. 牙髓干细胞来源外泌体修复兔颞下颌关节软骨损伤后软骨组织修复的实验研究[J]. 临床口腔医学杂志, 2020, 36(4): 202-205 LUO Yu, LI Ruohan, PENG Youjian. Cartilage tissue regeneration after dental cartilage injury induced by exosome derived from dental pulp stem cells in rabbits[J]. Journal of Clinical Stomatology, 2020, 36(4): 202-205. (in Chinese)
|
60 |
LIQ, RENS, GEC, et al.Effect of jaw opening on the stress pattern in a normal human articular disc: finite element analysis based on MRI images[J]Head Face Med, 2014, 10( 1): 24.
doi: 10.1186/1746-160X-10-24
|
61 |
SALINASE Y, HUJ C, ATHANASIOUK. A guide for using mechanical stimulation to enhance tissue-engineered articular cartilage properties[J]Tissue Eng Part B-Rev, 2018, 24( 5): 345-358.
doi: 10.1089/ten.TEB.2018.0006
|
62 |
LEEJ K, HUWEL W, PASCHOSN, et al.Tension stimulation drives tissue formation in scaffold-free systems[J]Nat Mater, 2017, 16( 8): 864-873.
doi: 10.1038/nmat4917
|
63 |
PEIY, FANJ J, ZHANGX Q, et al.Repairing the osteochondral defect in goat with the tissue-engineered osteochondral graft preconstructed in a double-chamber stirring bioreactor[J]Biomed Res Int, 2014, 219203.
doi: 10.1155/2014/219203
|
64 |
MACBARBR F, PASCHOSN K, ABEUGR, et al.Passive strain-induced matrix synthesis and organization in shape-specific, cartilaginous neotissues[J]Tissue Eng Part A, 2014, 20( 23-24): 3290-3302.
doi: 10.1089/ten.TEA.2013.0694
|
65 |
MAUCKR L, SOLTZM A, WANGC C, et al.Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels[J]J BioMech Eng, 2000, 122( 3): 252-260.
doi: 10.1115/1.429656
|
66 |
李振强. 自组装颞下颌关节盘纤维软骨模型的构建及静水压对其基质合成的影响[D]. 兰州:兰州大学,2011 LI Zhenqiang. Construction of self-assembled disc fibrocartilage model of temporomandibular joint and the effect of hydrostatic pressure on its matrix synthesis[D]. Lanzhou: Lanzhou University, 2011. (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|