Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (2): 212-221    DOI: 10.3724/zdxbyxb-2021-0118
专题报道     
组织工程修复颞下颌关节的关键因素研究进展
王晨宇1(),王英男2,汪存艺1,施洁珺2,王慧明2,*()
1.浙江大学医学院,浙江 杭州 310058
2.浙江大学医学院附属口腔医院 浙江大学口腔医学院 浙江省口腔生物医学重点实验室,浙江 杭州 310016
3.浙江大学医学院附属口腔医院,浙江 杭州 310006
Research progress on tissue engineering in repairing temporo-mandibular joint
WANG Chenyu1(),WANG Yingnan2,WANG Cunyi1,SHI Jiejun2,WANG Huiming2,*()
1. Zhejiang University School of Medicine, Hangzhou 310058, China;
2.
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
 全文: PDF(2754 KB)   HTML( 8 )
摘要:

颞下颌关节骨关节炎(TMJOA)主要表现为颞下颌关节盘(TMJD)穿孔以及髁突骨软骨复合体(COCC)破坏。近年来,组织工程技术成为修复颞下颌关节的有效策略之一。随着支架材料技术的不断进步,结合天然材料与人工合成材料优势的复合支架成为优化支架性能的重要手段。近年来,微创理念下的原位成胶方法极大地解决了手术创伤以及材料吻合的问题,有利于组织工程向临床转化。细胞外基质支架技术在解决支架来源问题的同时最大程度地模拟了细胞外环境,为颞下颌关节组织工程向动物水平的转化提供了重要的手段。由于肋软骨细胞来源与扩增的限制,采用不同来源的间充质干细胞成为颞下颌关节组织工程的广泛选择,其中从关节软骨表面分离得到的纤维软骨干细胞可能更为合适。转化生长因子β超家族由于其明确的骨软骨活性,富血小板衍生物作为一种制备便捷的复合生物因子,同时结合间充质干细胞外泌体和应力刺激的形式调控细胞外微环境等方法均在颞下颌关节组织工程中得到运用。未来,通过复合生物活性因子并结合一定的应力刺激可能成为颞下颌关节组织工程研究的重要趋势之一。本文就组织工程技术修复颞下颌关节骨软骨复合体及关节盘的进展,尤其是在支架材料、种子细胞以及刺激因子方面的研究进展作一综述,以期为未来的研究设计和临床干预提供指导。

关键词: 颞下颌关节骨关节炎组织工程颞下颌关节盘骨软骨复合体综述    
Abstract:

Temporomandibular joint osteoarthritis (TMJOA) is mainly manifested as perforation of temporomandibular joint disc (TMJD) and destruction of condylar osteochondral complex (COCC). In recent years, tissue engineering technology has become one of the effective strategies in repairing this damage. With the development of scaffold material technology, composite scaffolds have become an important means to optimize the performance of scaffolds with the combined advantages of natural materials and synthetic materials. The in situ gelling method with the minimally invasive concept can greatly solve the problems of surgical trauma and material anastomosis, which is beneficial to the clinical transformation of temporomandibular joint tissue engineering. Extracellular matrix scaffolds technology can solve the problem of scaffold source and maximize the simulation of the extracellular environment, which provides an important means for the transformation of temporomandibular joint tissue engineering to animal level. Due to the limitation of the source and amplification of costal chondrocytes, the use of mesenchymal stem cells from different sources has been widely used for temporomandibular joint tissue engineering. The fibrochondral stem cells isolated from surface layer of articular cartilage may provide one more suitable cell source. Transforming growth factor β superfamily, due to its osteochondrogenesis activity has been widely used in tissue engineering, and platelet-rich derivative as a convenient preparation of compound biological factor, gradually get used in temporomandibular joint tissue engineering. With the deepening of research on extracellular microenvironment and mechanical stimulation, mesenchymal stem cells, exosomes and stress stimulation are increasingly being used to regulate the extracellular microenvironment. In the future, the combination of complex bioactive factors and certain stress stimulation may become a trend in the temporomandibular joint tissue engineering research. In this article, the progress on tissue engineering in repairing COCC and TMJD, especially in scaffold materials, seed cells and bioactive factors, are reviewed, so as to provide information for future research design and clinical intervention.

Key words: Temporomandibular joint    Osteoarthritis    Tissue engineering    Temporomandibular joint disc    Osteochondral complex    Review
收稿日期: 2020-12-05 出版日期: 2021-06-18
CLC:  Q819  
基金资助: 浙江省基础公益研究计划(LGF21H140003);浙江省医药卫生科技计划(2021418901);中央高校基本科研业务费专项资金(2020FZZX008-06)
通讯作者: 王慧明     E-mail: 21818694@zju.edu.cn;whmwhm@zju.edu.cn
作者简介: 王晨宇,硕士研究生,主要从事颞下颌关节组织工程研究;E-mail:21818694@zju.edu.cn;https://orcid.org/0000-0002-0671-0877
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王晨宇
王英男
汪存艺
施洁珺
王慧明

引用本文:

王晨宇,王英男,汪存艺,施洁珺,王慧明. 组织工程修复颞下颌关节的关键因素研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 212-221.

WANG Chenyu,WANG Yingnan,WANG Cunyi,SHI Jiejun,WANG Huiming. Research progress on tissue engineering in repairing temporo-mandibular joint. J Zhejiang Univ (Med Sci), 2021, 50(2): 212-221.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0118        http://www.zjujournals.com/med/CN/Y2021/V50/I2/212

图 1  颞下颌关节的解剖结构(冠状切面)

作者(发表年)

研究对象

材料种类

支架材料

细胞来源

生物因子

Kalpakci 等(2011)[10]

细胞

天然高分子材料

琼脂糖

纤维软骨细胞、

关节软骨细胞

转化生长因子β1

MacBarb 等(2013)[28]

细胞

天然高分子材料

琼脂糖

纤维软骨细胞、

关节软骨细胞

软骨素酶 ABC、转化生长因子β1

Wang 等(2017)[8]

天然高分子材料

重组胶原

Vapniarsky 等(2018)[29]

天然高分子材料

琼脂糖

肋软骨细胞

转化生长因子β1、软骨素酶 ABC、赖氨酰氧化酶样蛋白 2

Ahtiainen 等(2013)[30]

人工合成材料

聚乳酸

脂肪来源干细胞

转化生长因子β1

Legemate 等(2016)[13]

细胞

人工合成材料

聚己内酯

骨髓间充质干细胞

结缔组织生长因子、转化生长因子β1

Ronald 等(2016)[15]

细胞

人工合成材料

二氧化钛纳米薄膜

纤维软骨细胞

Wang 等(2018)[11]

细胞

人工合成材料

聚乳酸–羟基乙酸共聚物

纤维软骨细胞、

滑膜间充质干细胞

转化生长因子β3

Wu 等(2014)[7]

裸鼠*

复合材料

纤维蛋白–壳聚糖

滑膜间充质干细胞

Tarafder 等(2016)[14]

复合材料

聚乳酸–羟基乙酸微球–聚己内酯

骨髓间充质干细胞

结缔组织生长因子、转化生长因子β3

Bousnaki 等(2018)[31]

细胞

复合材料

壳聚糖–海藻酸钠

牙髓干细胞

Moura 等(2020)[17]

材料

复合材料

聚乙二醇丙烯酸酯水凝胶为核的聚己内酯

Brown 等(2012)[26]

组织支架材料

脱细胞膀胱组织

Juran 等(2015)[27]

细胞

组织支架材料

脱细胞颞下颌关节盘

脐带间充质干细胞

表 1  关节盘组织工程支架材料研究一览

作者(发表年)

研究对象

材料种类

支架材料

细胞来源

刺激因子

Zheng 等(2011)[32]

裸鼠*

天然高分子材料

珊瑚

骨髓间充质干细胞

碱性成纤维生长因子(转染)

Liu 等(2011)[9]

天然高分子材料

透明质酸水凝胶

胰岛素生长因子-1

沈佩等(2019)[33]

大鼠

天然高分子材料

胶原蛋白

软骨干细胞

Dormer 等(2011)[12]

人工合成材料

聚乳酸–羟基乙酸共聚物微球梯度

骨形态发生蛋白-2、

转化生长因子β1

张广德等(2017)[24]

人工合成材料

聚乳酸–羟基乙酸共聚物–聚乙二醇–聚乳酸–羟基乙酸共聚物嵌段共聚物

脂肪间充质干细胞

肝细胞生长因子(转染)

Sun 等(2018)[34]

山羊

人工合成材料

聚氧乙烯–聚氧丙烯醚嵌段共聚物

关节软骨细胞骨髓间充质干细胞

李祥等(2010)[35]

复合材料

梯度磷酸三钙–胶原

刘春栋等(2012)[18]

*

复合材料

透明质酸–聚乳酸

关节软骨细胞

石磊等(2015)[36]

复合材料

细胞膜片/PRF 双膜

骨髓间充质干细胞

富血小板纤维蛋白

Wei 等(2016)[37]

山羊

复合材料

羟基磷灰石、脱细胞肋骨

郭延伟等(2018)[23]

复合材料

成骨多肽–透明质酸–硫酸软骨素

脂肪间充质干细胞

转化生长因子β3(转染)

Chin 等(2018)[38]

山羊

复合材料

聚癸二酸丙三醇酯/明胶

镁离子

Wang 等(2018)[39]

*

复合材料

骨相:聚己内酯–羟基磷灰石

软骨相:细胞膜片/聚乳酸–聚羟基乙酸

骨髓间充质干细胞

关节软骨细胞

表 2  髁突骨软骨复合体组织工程支架研究一览
1 PETER E D. Functional occlusion: from TMJ to smile design[M]. Philadelphia: Elsevier Mosby, 2007: 35
2 SIDEBOTTOMA J. Current thinking in temporomandibular joint management[J]Br J Oral Maxillofac Surg, 2009, 47( 2): 91-94.
doi: 10.1016/j.bjoms.2008.08.012
3 李春洁, 张一帆, 贾源源, 等. 透明质酸钠治疗颞下颌关节结构紊乱临床随机对照试验的系统评价[J]. 华西口腔医学杂志, 2011, 29(5): 488-493
LI Chunjie, ZHANG Yifan, JIA Yuanyuan, et al. Systematic review of the randomized controlled trial of sodium hyaluronate in the treatment of structural disorders of the temporomandibular joint[J]. West China Journal of Stomatology, 2011, 29(5): 488-493. (in Chinese)
4 DYMH, BOWLERD, ZEIDANJ. Pharmacologic treatment for temporomandibular disorders[J]Dent Clin North Am, 2016, 60( 2): 367-379.
doi: 10.1016/j.cden.2015.11.012
5 MACHADOE, BONOTTOD, CUNALIP A. Intra-articular injections with corticosteroids and sodium hyaluronate for treating temporomandibular joint disorders: a systematic review[J]Dental Press J Orthod, 2013, 18( 5): 128-133.
doi: 10.1590/s2176-94512013000500021
6 张玲阁, 王章正, 张 睿, 等. 关节镜手术治疗颞下颌关节紊乱病的疗效评价[J]. 医药论坛杂志, 2017, 38(4): 96-97
ZHANG Lingge, WANG Zhangzheng, ZHANG Rui, et al. Efficacy evaluation of arthroscopic surgery for temporomandibular joint disorders[J]. Journal of Medical Forum, 2017, 38(4): 96-97. (in Chinese)
7 WUY, GONGZ, LIJ, et al.The pilot study of fibrin with temporomandibular joint derived synovial stem cells in repairing TMJ disc perforation[J]Biomed Res Int, 2014, 454-021.
doi: 10.1155/2014/454021
8 WANGK H, CHANW P, CHIUL H, et al.Histological and immunohistochemical analyses of repair of the disc in the rabbit temporomandibular joint using a collagen template[J]Materials, 2017, 10( 8): 924.
doi: 10.3390/ma10080924
9 LIUX W, HUJ, MANC, et al.Insulin-like growth factor-1 suspended in hyaluronan improves cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint[J]Int J Oral Maxillofac Surg, 2011, 40( 2): 184-190.
doi: 10.1016/j.ijom.2010.10.003
10 KALPAKCIK N, KIME J, ATHANASIOUK A. Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering[J]Acta Biomater, 2011, 7( 4): 1710-1718.
doi: 10.1016/j.actbio.2010.12.015
11 WangC H, WangS, ZhangB. Layering poly (lactic-co-glycolic acid)-based electrospun membranes and co-culture cell sheets for engineering temporomandibular joint disc[J]J Biol Regul Homeost Agents, 2018, 32( 1): 55-61.
doi: 10.1002/biot.201700203
12 DORMERN H, BUSAIDYK, BERKLANDC J, et al.Osteochondral interface regeneration of rabbit mandibular condyle with bioactive signal gradients[J/OL]J Oral Maxillofac Surg, 2011, 69( 6): e50-e57.
doi: 10.1016/j.joms.2010.12.049
13 LEGEMATEK, TARAFDERS, JUNY, et al.Engineering human TMJ discs with protein-releasing 3D-printed scaffolds[J]J Dent Res, 2016, 95( 7): 800-807.
doi: 10.1177/0022034516642404
14 TARAFDERS, KOCHA, JUNY, et al.Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration[J]Biofabrication, 2016, 8( 2): 025003.
doi: 10.1088/1758-5090/8/2/025003
15 RONALDS, MILLSD K. Fibrochondrocyte growth and functionality on TiO2 nanothin films[J]J Funct Biomater, 2016, 7( 2): 15.
doi: 10.3390/jfb7020015
16 KOMMIREDDYD S, SRIRAMS M, LVOVY M, et al.Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films[J]Biomaterials, 2006, 27( 24): 4296-4303.
doi: 10.1016/j.biomaterials.2006.03.042
17 MOURAC, TRINDADED, VIEIRAM, et al.Multi-material implants for temporomandibular joint disc repair: tailored additive manufacturing production[J]Front Bioeng Biotechnol, 2020,
doi: 10.3389/fbioe.2020.00342
18 刘春栋, 张志光, 苏 凯, 等. 透明质酸改性聚乳酸支架组织工程软骨的构建[J]. 广东牙病防治, 2012, 20(3): 124-129
LIU Chundong, ZHANG Zhiguang, SU Kai, et al. Construction of tissue engineering cartilage with modified polylactic acid scaffold using hyaluronic acid[J]. Journal of Dental Prevention and Treatment, 2012, 20(3): 124-129. (in Chinese)
19 DIMATTEOR, DARLINGN J, SEGURAT. In situforming injectable hydrogels for drug delivery and wound repair[J]Adv Drug Deliver Rev, 2018, 167-184.
doi: 10.1016/j.addr.2018.03.007
20 ZHOUT, LIX, LIG, et al.Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair[J]Sci Rep, 2017, 7( 1): 10553.
doi: 10.1038/s41598-017-11322-w
21 MREDHAM T I, KITAMURAN, NONOYAMAT, et al.Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone[J]Biomaterials, 2017, 85-95.
doi: 10.1016/j.biomaterials.2017.04.005
22 RADHAKRISHNANJ, SUBRAMANIANA, KRISHNANU M, et al.Injectable and 3D bioprinted polysaccharide hydrogels:from cartilage to osteochondral tissue engineering[J]Biomacromolecules, 2017, 18( 1): 1-26.
doi: 10.1021/acs.biomac.6b01619
23 郭延伟, 杨世茂. TGF-β3 转染脂肪干细胞复合 OGP-HA-ChS 支架对兔髁突受损软骨的修复作用[J]. 上海口腔医学, 2018, 27(6): 567-573
GUO Yanwei, YANG Shimao. Effect of TGF-β3 transfected with adipose derived stem cells and OGP-HA-chondroitin sulfate scaffold on repair of condylar cartilage in rabbits[J]. Shanghai Journal of Stomatology, 2018, 27(6): 567-573. (in Chinese)
24 张广德, 李荣亮, 岳从雷, 等. 腺病毒介导 HGF 转染脂肪干细胞复合温敏型可注射水凝胶对兔颞下颌关节骨关节病髁突软骨的修复作用[J]. 口腔医学研究, 2017, 33(9): 924-927
ZHANG Guangde, LI Rongliang, YUE Conglei, et al. Therapeutic effect of adenovirus-mediated HGF transfection of ADSCs combined with injectable hydrogei on the repair of temporomandibular joint arthritic condylar cartilage in rabbits[J]. Journal of Oral Science Research, 2017, 33(9): 924-927. (in Chinese)
25 YUANX, WEIY, VILLASANTEA, et al.Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model[J]Biomaterials, 2017, 59-71.
doi: 10.1016/j.biomaterials.2017.04.004
26 BROWNB N, CHUNGW L, ALMARZAA J, et al.Inductive, scaffold-based, regenerative medicine approach to reconstruction of the temporomandibular joint disk[J]J Oral Maxillofac Surg, 2012, 70( 11): 2656-2668.
doi: 10.1016/j.joms.2011.12.030
27 JURANC M, DOLWICKM F, MCFETRIDGEP S. Engineered microporosity: enhancing the early regenerative potential of decellularized temporomandibular joint discs[J]Tissue Eng Part A, 2015, 21( 3-4): 829-839.
doi: 10.1089/ten.TEA.2014.0250
28 MACBARBR F, CHENA L, HUJ C, et al.Engineering functional anisotropy in fibrocartilage neotissues[J]Biomaterials, 2013, 34( 38): 9980-9989.
doi: 10.1016/j.biomaterials.2013.09.026
29 VAPNIARSKYN, HUWEL W, ARZIB, et al.Tissue engineering toward temporomandibular joint disc regeneration[J]Sci Transl Med, 2018, 10( 446): eaaq1802.
doi: 10.1126/scitranslmed.aaq1802
30 AHTIAINENK, MAUNOJ, ELL?V, et al.Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc[J]J R Soc Interface, 2013, 10( 85): 20130287.
doi: 10.1098/rsif.2013.0287
31 BOUSNAKIM, BAKOPOULOUA, PAPADOGIANNID, et al.Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards temporomandibular joint disc regeneration[J]J Mater Sci-Mater Med, 2018, 29( 7): 97.
doi: 10.1007/s10856-018-6109-6
32 ZHENGY H, SUK, JIANY T, et al.Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs[J]J Tissue Eng Regen Med, 2011, 5( 7): 540-550.
doi: 10.1002/term.346
33 沈 佩. 胚胎干细胞经外胚层向髁突软骨干细胞定向分化及其软骨损伤修复应用研究[D]. 上海: 上海交通大学, 2019
SHEN Pei. Directional differentiation of embryonic stem cells into condylar cartilage stem cells via ectoderm and its application in cartilage injury repair[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
34 SUNH, HUANGY, ZHANGL, et al.Co?culture of bone marrow stromal cells and chondrocytes in vivo for the repair of the goat condylar cartilage defects[J]Exp Ther Med, 2018, 16( 4): 2969-2977.
doi: 10.3892/etm.2018.6551
35 李 祥, 查国庆, 朱双喜, 等. 胶原复合梯度磷酸三钙修复髁突软骨缺损[J/CD]. 中华口腔医学研究杂志(电子版), 2010, 4(3): 239-243
LI Xiang, ZHA Guoqin, ZHU Shuangxi, et al. Reconstruction of temporomandibular joint condylar cartilage defect with Col/TCP[J/CD].Chinese Journal of Stomatological Research (Electronic Edition), 2010, 4 (3): 239-243. (in Chinese)
36 石 磊, 李轶杰, 赵 萤, 等. NF-κB 在压力调控BMSCs/PRF 修复兔髁突软骨缺损中的作用研究[J]. 牙体牙髓牙周病学杂志, 2015, 25(3): 125-132, 178
SHI Lei, LI Yijie, ZHAO Ying, et al. Role of NF-κB in condylar cartilage defects repair by pressure-regulated BMSCs/PRF in rabbits[J]. Chinese Journal of Conservative Dentistry, 2015, 25(3): 125-132, 178. (in Chinese)
37 WEIJ, HERRLERT, HAND, et al.Autologous temporomandibular joint reconstruction independent of exogenous additives: a proof-of-concept study for guided self-generation[J]Sci Rep, 2016, 6( 1): 37904.
doi: 10.1038/srep37904
38 CHINA R, GAOJ, WANGY, et al.Regenerative potential of various soft polymeric scaffolds in the temporomandibular joint condyle[J]J Oral Maxillofac Surg, 2018, 76( 9): 2019-2026.
doi: 10.1016/j.joms.2018.02.012
39 WANG F, HU Y, HE D, et al. Scaffold-free cartilage cell sheet combined with bone-phase bmscs-scaffold regenerate osteochondral construct in mini-pig model[J]. Am J Transl Res, 2018, 10(10): 2997-3010
40 DUAN L, LIANG Y, MA B, et al. Epigenetic regulation in chondrocyte phenotype maintenance for cell-based cartilage repair[J]. Am J Transl Res, 2015, 7(11): 2127-2140
41 ZAKIA A, ZAGHLOULM, HELALM E, et al.Impact of autologous bone marrow-derived stem cells on degenerative changes of articulating surfaces associated with the arthritic temporomandibular joint: an experimental study in rabbits[J]J Oral Maxillofac Surg, 2017, 75( 12): 2529-2539.
doi: 10.1016/j.joms.2017.05.001
42 XIEX, WANGY, ZHAOC, et al.Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration[J]Biomaterials, 2012, 33( 29): 7008-7018.
doi: 10.1016/j.biomaterials.2012.06.058
43 DOWTHWAITEG P, BISHOPJ C, REDMANS N, et al.The surface of articular cartilage contains a progenitor cell population[J]J Cell Sci, 2004, 117( 6): 889-897.
doi: 10.1242/jcs.00912
44 EMBREEM C, CHENM, PYLAWKAS, et al.Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury[J]Nat Commun, 2016, 7( 1): 13073.
doi: 10.1038/ncomms13073
45 CLEARYM A, VAN OSCHG J V M, BRAMAP A, et al.FGF, TGF β and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells[J]J Tissue Eng Regen Med, 2015, 9( 4): 332-342.
doi: 10.1002/term.1744
46 VAN CAAMA, MADEJW, GARCIA DE VINUESAA, et al.TGFβ1-induced SMAD2/3 and SMAD1/5 phosphorylation are both ALK5-kinase-dependent in primary chondrocytes and mediated by TAK1 kinase activity[J]Arthritis Res Ther, 2017, 19( 1): 112.
doi: 10.1186/s13075-017-1302-4
47 YINGB, CHENK, HUJ, et al.Effect of different doses of transforming growth factor-β1 on cartilage and subchondral bone in osteoarthritic temporomandibular joints[J]Bri J Oral Maxillofac Surg, 2013, 51( 3): 241-246.
doi: 10.1016/j.bjoms.2012.05.014
48 YOONB S, POGUER, OVCHINNIKOVD A, et al.BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways[J]Development, 2006, 133( 23): 4667-4678.
doi: 10.1242/dev.02680
49 HELLINGMANC A, DAVIDSONE N B, KOEVOETW, et al.Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification[J]Tissue Eng Part A, 2011, 17( 7-8): 1157-1167.
doi: 10.1089/ten.TEA.2010.0043
50 LIC S, ZHANGX, PéAULTB, et al.Accelerated chondrogenic differentiation of human perivascular stem cells with NELL-1[J]Tissue Eng Part A, 2016, 22( 3-4): 272-285.
doi: 10.1089/ten.TEA.2015.0250
51 XIAOD, HUJ, CHENK, et al.Protection of articular cartilage by intra-articular injection of NEL-like molecule 1 in temporomandibular joint osteoarthritis[J/OL]J Craniofac Surg, 2012, 23( 1): e55-e58.
doi: 10.1097/SCS.0b013e3182418d02
52 KüTüKN, BA?B, SOYLUE, et al.Effect of platelet-rich plasma on fibrocartilage, cartilage, and bone repair in temporomandibular joint[J]J Oral Maxillofac Surg, 2014, 72( 2): 277-284.
doi: 10.1016/j.joms.2013.09.011
53 COSKUNU, CANDIRLIC, KERIMOGLUG, et al.Effect of platelet-rich plasma on temporomandibular joint cartilage wound healing: experimental study in rabbits[J]J Cranio-Maxillofac Surg, 2019, 47( 2): 357-364.
doi: 10.1016/j.jcms.2018.12.004
54 NITECKA-BUCHTAA, WALCZYNSKA-DRAGONK, KEMPAW M, et al.Platelet-rich plasma intramuscular injections – antinociceptive therapy in myofascial pain within masseter muscles in temporomandibular disorders patients: a pilot study[J]Front Neurol, 2019, 250.
doi: 10.3389/fneur.2019.00250
55 MAUMUSM, MANFERDINIC, TOUPETK, et al.Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis[J]Stem Cell Res, 2013, 11( 2): 834-844.
doi: 10.1016/j.scr.2013.05.008
56 ZHANG S, TEO K Y W, CHUAH S J, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials, 2019, 200: 35-47
57 CUIS J, ZHANGT, FUY, et al.DPSCs attenuate experimental progressive TMJ arthritis by inhibiting the STAT1 pathway[J]J Dent Res, 2020, 99( 4): 446-455.
doi: 10.1177/0022034520901710
58 OGASAWARAN, KANOF, HASHIMOTON, et al.Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis[J]Osteoarthritis Cartilage, 2020, 28( 6): 831-841.
doi: 10.1016/j.joca.2020.03.010
59 骆 瑜, 李若涵, 彭友俭. 牙髓干细胞来源外泌体修复兔颞下颌关节软骨损伤后软骨组织修复的实验研究[J]. 临床口腔医学杂志, 2020, 36(4): 202-205
LUO Yu, LI Ruohan, PENG Youjian. Cartilage tissue regeneration after dental cartilage injury induced by exosome derived from dental pulp stem cells in rabbits[J]. Journal of Clinical Stomatology, 2020, 36(4): 202-205. (in Chinese)
60 LIQ, RENS, GEC, et al.Effect of jaw opening on the stress pattern in a normal human articular disc: finite element analysis based on MRI images[J]Head Face Med, 2014, 10( 1): 24.
doi: 10.1186/1746-160X-10-24
61 SALINASE Y, HUJ C, ATHANASIOUK. A guide for using mechanical stimulation to enhance tissue-engineered articular cartilage properties[J]Tissue Eng Part B-Rev, 2018, 24( 5): 345-358.
doi: 10.1089/ten.TEB.2018.0006
62 LEEJ K, HUWEL W, PASCHOSN, et al.Tension stimulation drives tissue formation in scaffold-free systems[J]Nat Mater, 2017, 16( 8): 864-873.
doi: 10.1038/nmat4917
63 PEIY, FANJ J, ZHANGX Q, et al.Repairing the osteochondral defect in goat with the tissue-engineered osteochondral graft preconstructed in a double-chamber stirring bioreactor[J]Biomed Res Int, 2014, 219203.
doi: 10.1155/2014/219203
64 MACBARBR F, PASCHOSN K, ABEUGR, et al.Passive strain-induced matrix synthesis and organization in shape-specific, cartilaginous neotissues[J]Tissue Eng Part A, 2014, 20( 23-24): 3290-3302.
doi: 10.1089/ten.TEA.2013.0694
65 MAUCKR L, SOLTZM A, WANGC C, et al.Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels[J]J BioMech Eng, 2000, 122( 3): 252-260.
doi: 10.1115/1.429656
66 李振强. 自组装颞下颌关节盘纤维软骨模型的构建及静水压对其基质合成的影响[D]. 兰州:兰州大学,2011
LI Zhenqiang. Construction of self-assembled disc fibrocartilage model of temporomandibular joint and the effect of hydrostatic pressure on its matrix synthesis[D]. Lanzhou: Lanzhou University, 2011. (in Chinese)
[1] 旷文静,罗小波,王冏珂,曾昕. 梅–罗综合征患者的表征及其诊治[J]. 浙江大学学报(医学版), 2021, 50(2): 148-154.
[2] 任超杰,钟丹妮,周民. 微藻在生物医学领域的研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 261-266.
[3] 应颖超,江佩芳. 瞬时受体电位 M2 型离子通道在神经系统疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 267-276.
[4] 邵一鸣,苏力德,郝睿,王茜茜,那仁满都拉. 乙型肝炎病毒诱发肝细胞癌分子机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 113-122.
[5] 韩恒毅,冯帆,李海涛. 表观遗传与肿瘤代谢研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 1-16.
[6] 陈菲,虞敏,钟永红,华雯,黄华琼. 中性粒细胞在哮喘中的地位和作用[J]. 浙江大学学报(医学版), 2021, 50(1): 123-130.
[7] 颜京,张婷婷,赵葵. 核医学分子影像探针应用于神经内分泌肿瘤的研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 131-137.
[8] 张明佺,潘俊辰,黄蓬. RAS基因与脂代谢在恶性肿瘤中的相互调控[J]. 浙江大学学报(医学版), 2021, 50(1): 17-22.
[9] 胡鑫暘,金洪传,朱丽媛. 谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制[J]. 浙江大学学报(医学版), 2021, 50(1): 32-40.
[10] 孟颖,王启扉,吕志民. 胆固醇代谢与肿瘤[J]. 浙江大学学报(医学版), 2021, 50(1): 23-31.
[11] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[12] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[13] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[14] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[15] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.