综述 |
|
|
|
|
微藻在生物医学领域的研究进展 |
任超杰1( ),钟丹妮2,*( ),周民1,2,*( ) |
1.浙江大学医学院附属第二医院,浙江 杭州 310009 2.浙江大学转化医学研究院,浙江 杭州 310029 |
|
Research progress on the biomedical application of microalgae |
REN Chaojie1( ),ZHONG Danni2,*( ),ZHOU Min1,2,*( ) |
1. the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; 2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China |
1 |
IGEO O, UMORUL E, ARIBOS. Natural products: a minefield of biomaterials[J]ISRN Mater Sci, 2012, 1-20.
doi: 10.5402/2012/983062
|
2 |
GANGLD, ZEDLERJ A Z, RAJAKUMARP D, et al.Biotechnological exploitation of microalgae[J]J Exp Bot, 2015, 66( 22): 6975-6990.
doi: 10.1093/jxb/erv426
|
3 |
TORRES-TIJIY, FIELDSF J, MAYFIELDS P. Microalgae as a future food source[J]Biotechnol Adv, 2020, 107536.
doi: 10.1016/j.biotechadv.2020.107536
|
4 |
BHUJADER, CHIDAMBARAMM, KUMARA, et al.Algae to economically viable low-carbon-footprint oil[J]Annu Rev Chem Biomol Eng, 2017, 8( 1): 335-357.
doi: 10.1146/annurev-chembioeng-060816-101630
|
5 |
MONTEROL, DEL PILAR SáNCHEZ-CAMARGOA, IBá?EZE, et al.Phenolic compounds from edible algae: bioactivity and health benefits[J]Curr Med Chem, 2018, 25( 37): 4808-4826.
doi: 10.2174/0929867324666170523120101
|
6 |
LIANGZ C, LIANGM H, JIANGJ G. Transgenic microalgae as bioreactors[J]Crit Rev Food Sci Nutr, 2020, 60( 19): 3195-3213.
doi: 10.1080/10408398.2019.1680525
|
7 |
CHENGS Y, SHOWP L, LAUB F, et al.New prospects for modified algae in heavy metal adsorption[J]Trends Biotech, 2019, 37( 11): 1255-1268.
doi: 10.1016/j.tibtech.2019.04.007
|
8 |
QIAOY, YANGF, XIET, et al.Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer[J]Sci Adv, 2020, 6( 21): eaba5996.
doi: 10.1126/sciadv.aba5996
|
9 |
SEMERAROP, CHIMIENTIG, ALTAMURAE, et al.Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications[J]Mater Sci EngC Mater Biol Appl, 2018, 47-56.
doi: 10.1016/j.msec.2017.12.012
|
10 |
ZHOUH, XIAL, ZHONGJ, et al.Plant-derived chlorophyll derivative loaded liposomes for tri-model imaging guided photodynamic therapy[J]Nanoscale, 2019, 11( 42): 19823-19831.
doi: 10.1039/C9NR06941K
|
11 |
WILLIAMSP J B, LAURENSL M L. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics[J]Energy Environ Sci, 2010, 3( 5): 554.
doi: 10.1039/b924978h
|
12 |
LUQUER. Algal biofuels: the eternal promise?[J]Energy Environ Sci, 2010, 3( 3): 254.
doi: 10.1039/b922597h
|
13 |
GUOL P, ZHANGY, LIW C. Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture[J]J Colloid Interface Sci, 2017, 257-264.
doi: 10.1016/j.jcis.2017.01.003
|
14 |
SQUIREK, KONGX, LEDUFFP, et al.Photonic crystal enhanced fluorescence immunoassay on diatom biosilica[J/OL]J Biophotonics, 2018, 11( 10): e201800009.
doi: 10.1002/jbio.201800009
|
15 |
KONGX, SQUIREK, LIE, et al.Chemical and biological sensing using diatom photonic crystal biosilica with in-situ growth plasmonic nanoparticles[J]IEEE Transon NanoBiosci, 2016, 15( 8): 828-834.
doi: 10.1109/TNB.2016.2636869
|
16 |
BARIANAM, AWM S, KURKURIM, et al.Tuning drug loading and release properties of diatom silica microparticles by surface modifications[J]Int J Pharm, 2013, 443( 1-2): 230-241.
doi: 10.1016/j.ijpharm.2012.12.012
|
17 |
UTHAPPAU T, BRAHMKHATRIV, SRIRAMG, et al.Nature engineered diatom biosilica as drug delivery systems[J]J Control Release, 2018, 70-83.
doi: 10.1016/j.jconrel.2018.05.013
|
18 |
XIES, JIAON, TUNGS, et al.Controlled regular locomotion of algae cell microrobots[J]Biomed Microdevices, 2016, 18( 3): 47.
doi: 10.1007/s10544-016-0074-y
|
19 |
SHCHELIKI S, SIEBERS, GADEMANNK. Green algae as a drug delivery system for the controlled release of antibiotics[J]Chem Eur J, 2020, 26( 70): 16644-16648.
doi: 10.1002/chem.202003821
|
20 |
WEIBELD B, GARSTECKIP, RYAND, et al.Microoxen: microorganisms to move microscale loads[J]Proc Natl Acad Sci U S A, 2005, 102( 34): 11963-11967.
doi: 10.1073/pnas.0505481102
|
21 |
AKOLPOGLUM B, DOGANN O, BOZUYUKU, et al.High‐yield production of biohybrid microalgae for on‐demand cargo delivery[J]Adv Sci, 2020, 7( 16): 2001256.
doi: 10.1002/advs.202001256
|
22 |
YASAO, ERKOCP, ALAPANY, et al.Microalga-powered microswimmers toward active cargo delivery[J/OL]Adv Mater, 2018, 30( 45): e1804130.
doi: 10.1002/adma.201804130
|
23 |
LOSICD, YUY, AWM S, et al.Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies[J]Chem Commun, 2010, 46( 34): 6323-6325.
doi: 10.1039/c0cc01305f
|
24 |
ZHONGD, ZHANGD, XIET, et al.Biodegradable microalgae‐based carriers for targeted delivery and imaging‐guided therapy toward lung metastasis of breast cancer[J/OL]Small, 2020, 16( 20): e2000819.
doi: 10.1002/smll.202000819
|
25 |
NAGYJ A, CHANGS H, DVORAKA M, et al.Why are tumour blood vessels abnormal and why is it important to know?[J]Br J Cancer, 2009, 100( 6): 865-869.
doi: 10.1038/sj.bjc.6604929
|
26 |
BLAGOSKLONNYM V. Antiangiogenic therapy and tumor progression[J]Cancer Cell, 2004, 5( 1): 13-17.
doi: 10.1016/S1535-6108(03)00336-2
|
27 |
BARKERH E, PAGETJ T E, KHANA A, et al.The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[J]Nat Rev Cancer, 2015, 15( 7): 409-425.
doi: 10.1038/nrc3958
|
28 |
MAASA L, CARTERS L, WILEYTOE P, et al.Tumor vascular microenvironment determines responsiveness to photodynamic therapy[J]Cancer Res, 2012, 72( 8): 2079-2088.
doi: 10.1158/0008-5472.CAN-11-3744
|
29 |
CHENH, TIANJ, HEW, et al.H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J]J Am Chem Soc, 2015, 137( 4): 1539-1547.
doi: 10.1021/ja511420n
|
30 |
FANW, BUW, SHENB, et al.Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy[J]Adv Mater, 2015, 27( 28): 4155-4161.
doi: 10.1002/adma.201405141
|
31 |
SINGHS, SHARMAA, ROBERTSONG P. Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns[J]Cancer Res, 2012, 72( 22): 5663-5668.
doi: 10.1158/0008-5472.CAN-12-1527
|
32 |
ZHONGD, LIW, QIY, et al.Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxiafor FL/PA/MR imaging‐guided enhanced radio‐photodynamic synergetic therapy[J]Adv Funct Mater, 2020, 30( 17): 1910395.
doi: 10.1002/adfm.201910395
|
33 |
ZHOUT J, XINGL, FANY T, et al.Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy[J]J Control Release, 2019, 44-54.
doi: 10.1016/j.jconrel.2019.06.016
|
34 |
LEEC, LIMK, KIMS S, et al.Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer[J]J Control Release, 2019, 77-90.
doi: 10.1016/j.jconrel.2018.12.011
|
35 |
LIW, ZHONGD, HUAS, et al.Biomineralized biohybrid algae for tumor hypoxia modulation and cascade radio-photodynamic therapy[J]ACS Appl Mater Interfaces, 2020, 12( 40): 44541-44553.
doi: 10.1021/acsami.0c14400
|
36 |
HUNTT K, BURKEJ, BARBULA, et al.Wound healing[J]Science, 1999, 284( 5421): 1775.
doi: 10.1126/science.284.5421.1773d
|
37 |
BROUGHTONG, JANISJ E, ATTINGERC E. The basic science of wound healing[J]Plast Reconstr Surg, 2006, 117( 7 Suppl): 12S-34S.
doi: 10.1097/01.prs.0000225430.42531.c2
|
38 |
SEPEHRIPOURS, DHALIWALK, DHEANSAB. Hyperbaric oxygen therapy and intermittent ischaemia in the treatment of chronic wounds[J]Int Wound J, 2018, 15( 2): 310.
doi: 10.1111/iwj.12852
|
39 |
HEYBOERM, SHARMAD, SANTIAGOW, et al.Hyperbaric oxygen therapy: side effects defined and quantified[J]Adv Wound Care, 2017, 6( 6): 210-224.
doi: 10.1089/wound.2016.0718
|
40 |
LIW, WANGS, ZHONGD, et al.A bioactive living hydrogel: photosynthetic bacteria mediated hypoxia elimination and bacteria‐killing to promote infected wound healing[J]Adv Therap, 2021, 4( 1): 2000107.
doi: 10.1002/adtp.202000107
|
41 |
HARTT, MILNERR, CIFUA. Management of a diabetic foot[J]JAMA, 2017, 318( 14): 1387-1388.
doi: 10.1001/jama.2017.11700
|
42 |
GONZALEZF J, XIEC, JIANGC. The role of hypoxia-inducible factors in metabolic diseases[J]Nat Rev Endocrinol, 2019, 15( 1): 21-32.
doi: 10.1038/s41574-018-0096-z
|
43 |
CHENH, CHENGY, TIANJ, et al.Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes[J]Sci Adv, 2020, 6( 20): eaba4311.
doi: 10.1126/sciadv.aba4311
|
44 |
CENTENO-CERDASC, JARQUíN-CORDEROM, CHáVEZM N, et al.Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds[J]Acta Biomater, 2018, 184-194.
doi: 10.1016/j.actbio.2018.09.060
|
45 |
HENDRIJANTININ, SITALAKSMIR M, ARIM D A, et al.The expression of TNF-α, IL-1β, and IL-10 in the diabetes mellitus condition induced by the combination of spirulina and chitosan[J]Bali Med J, 2020, 9( 1): 22.
doi: 10.15562/bmj.v9i1.1625
|
46 |
CHAMORRO-CEVALLOSG, GARDU?O-SICILIANOL, BARRóNB L, et al.Chemoprotective effect of spirulina (arthrospira) against cyclophosphamide-induced mutagenicity in mice[J]Food Chem Toxicol, 2008, 46( 2): 567-574.
doi: 10.1016/j.fct.2007.08.039
|
47 |
CHAMORRO-CEVALLOS G. Aspectos nutricionales y toxicológicos de spirulina (arthrospira)[J]. Nutr Hosp, 2015, 32(1): 34-40
|
48 |
SCHENCKT L, HOPFNERU, CHáVEZM N, et al.Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering[J]Acta Biomater, 2015, 39-47.
doi: 10.1016/j.actbio.2014.12.012
|
49 |
CHáVEZM N, SCHENCKT L, HOPFNERU, et al.Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration[J]Biomaterials, 2016, 25-36.
doi: 10.1016/j.biomaterials.2015.10.014
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|