Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (2): 261-266    DOI: 10.3724/zdxbyxb-2021-0117
综述     
微藻在生物医学领域的研究进展
任超杰1(),钟丹妮2,*(),周民1,2,*()
1.浙江大学医学院附属第二医院,浙江 杭州 310009
2.浙江大学转化医学研究院,浙江 杭州 310029
Research progress on the biomedical application of microalgae
REN Chaojie1(),ZHONG Danni2,*(),ZHOU Min1,2,*()
1. the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
 全文: PDF(1977 KB)   HTML( 22 )
摘要:

微藻作为一种自然界中丰富的天然生物材料之一,品种繁多,极易获取,在生物医学领域有着广泛的应用前景。微藻富含天然荧光素,可作为荧光成像和光声成像造影剂应用于医学成像;微藻活性表面可有效吸附功能分子、金属元素等,在药物递送领域有较好的应用前景;微藻能够通过光合作用产氧来提高局部氧气浓度,改善局部乏氧状态,以提高乏氧肿瘤疗效并促进伤口愈合。此外,微藻具有良好的生物相容性和生物安全性,具有较高的转化价值。本文将从生物成像、药物递送、乏氧肿瘤治疗和伤口愈合等方面介绍微藻在生物医学领域应用的最新研究进展。

关键词: 微藻生物成像药物递送乏氧肿瘤治疗伤口愈合综述    
Abstract:

Microalgae is an easy-to-obtain natural biological material with many varieties and abundant natural reserves. Microalgae are rich in natural fluorescein, which can be used as a contrast agent for fluorescence imaging and photoacoustic imaging for medical imaging. With its active surface, microalgae can effectively adsorb functional molecules, metal elements, etc., and have good application prospects in the field of drug delivery. Microalgae can generate oxygen through photosynthesis to increase local oxygen concentration, reverse local hypoxia to enhance the efficacy of hypoxic tumors and promote wound healing. In addition, microalgae have good biocompatibility, and different administration methods have no obvious toxicity. This paper reviews the research progress on the biomedical application of microalgae in bioimaging, drug delivery, hypoxic tumor treatment, wound healing.

Key words: Microalgae    Bioimaging    Drug delivery    Hypoxic tumor therapy    Wound healing    Review
收稿日期: 2021-01-26 出版日期: 2021-06-18
CLC:  Q81  
基金资助: 国家自然科学基金(81971667);国家重点研发计划(2018YFC0115701)
通讯作者: 钟丹妮,周民     E-mail: rcj@zju.edu.cn;11718308@zju.edu.cn
作者简介: 任超杰,博士研究生,主要从事微藻相关研究;E-mail:rcj@zju.edu.cn;https://orcid.org/0000-0002-9889-4756
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
任超杰
钟丹妮
周民

引用本文:

任超杰,钟丹妮,周民. 微藻在生物医学领域的研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 261-266.

REN Chaojie,ZHONG Danni,ZHOU Min. Research progress on the biomedical application of microalgae. J Zhejiang Univ (Med Sci), 2021, 50(2): 261-266.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0117        http://www.zjujournals.com/med/CN/Y2021/V50/I2/261

1 IGEO O, UMORUL E, ARIBOS. Natural products: a minefield of biomaterials[J]ISRN Mater Sci, 2012, 1-20.
doi: 10.5402/2012/983062
2 GANGLD, ZEDLERJ A Z, RAJAKUMARP D, et al.Biotechnological exploitation of microalgae[J]J Exp Bot, 2015, 66( 22): 6975-6990.
doi: 10.1093/jxb/erv426
3 TORRES-TIJIY, FIELDSF J, MAYFIELDS P. Microalgae as a future food source[J]Biotechnol Adv, 2020, 107536.
doi: 10.1016/j.biotechadv.2020.107536
4 BHUJADER, CHIDAMBARAMM, KUMARA, et al.Algae to economically viable low-carbon-footprint oil[J]Annu Rev Chem Biomol Eng, 2017, 8( 1): 335-357.
doi: 10.1146/annurev-chembioeng-060816-101630
5 MONTEROL, DEL PILAR SáNCHEZ-CAMARGOA, IBá?EZE, et al.Phenolic compounds from edible algae: bioactivity and health benefits[J]Curr Med Chem, 2018, 25( 37): 4808-4826.
doi: 10.2174/0929867324666170523120101
6 LIANGZ C, LIANGM H, JIANGJ G. Transgenic microalgae as bioreactors[J]Crit Rev Food Sci Nutr, 2020, 60( 19): 3195-3213.
doi: 10.1080/10408398.2019.1680525
7 CHENGS Y, SHOWP L, LAUB F, et al.New prospects for modified algae in heavy metal adsorption[J]Trends Biotech, 2019, 37( 11): 1255-1268.
doi: 10.1016/j.tibtech.2019.04.007
8 QIAOY, YANGF, XIET, et al.Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer[J]Sci Adv, 2020, 6( 21): eaba5996.
doi: 10.1126/sciadv.aba5996
9 SEMERAROP, CHIMIENTIG, ALTAMURAE, et al.Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications[J]Mater Sci EngC Mater Biol Appl, 2018, 47-56.
doi: 10.1016/j.msec.2017.12.012
10 ZHOUH, XIAL, ZHONGJ, et al.Plant-derived chlorophyll derivative loaded liposomes for tri-model imaging guided photodynamic therapy[J]Nanoscale, 2019, 11( 42): 19823-19831.
doi: 10.1039/C9NR06941K
11 WILLIAMSP J B, LAURENSL M L. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics[J]Energy Environ Sci, 2010, 3( 5): 554.
doi: 10.1039/b924978h
12 LUQUER. Algal biofuels: the eternal promise?[J]Energy Environ Sci, 2010, 3( 3): 254.
doi: 10.1039/b922597h
13 GUOL P, ZHANGY, LIW C. Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture[J]J Colloid Interface Sci, 2017, 257-264.
doi: 10.1016/j.jcis.2017.01.003
14 SQUIREK, KONGX, LEDUFFP, et al.Photonic crystal enhanced fluorescence immunoassay on diatom biosilica[J/OL]J Biophotonics, 2018, 11( 10): e201800009.
doi: 10.1002/jbio.201800009
15 KONGX, SQUIREK, LIE, et al.Chemical and biological sensing using diatom photonic crystal biosilica with in-situ growth plasmonic nanoparticles[J]IEEE Transon NanoBiosci, 2016, 15( 8): 828-834.
doi: 10.1109/TNB.2016.2636869
16 BARIANAM, AWM S, KURKURIM, et al.Tuning drug loading and release properties of diatom silica microparticles by surface modifications[J]Int J Pharm, 2013, 443( 1-2): 230-241.
doi: 10.1016/j.ijpharm.2012.12.012
17 UTHAPPAU T, BRAHMKHATRIV, SRIRAMG, et al.Nature engineered diatom biosilica as drug delivery systems[J]J Control Release, 2018, 70-83.
doi: 10.1016/j.jconrel.2018.05.013
18 XIES, JIAON, TUNGS, et al.Controlled regular locomotion of algae cell microrobots[J]Biomed Microdevices, 2016, 18( 3): 47.
doi: 10.1007/s10544-016-0074-y
19 SHCHELIKI S, SIEBERS, GADEMANNK. Green algae as a drug delivery system for the controlled release of antibiotics[J]Chem Eur J, 2020, 26( 70): 16644-16648.
doi: 10.1002/chem.202003821
20 WEIBELD B, GARSTECKIP, RYAND, et al.Microoxen: microorganisms to move microscale loads[J]Proc Natl Acad Sci U S A, 2005, 102( 34): 11963-11967.
doi: 10.1073/pnas.0505481102
21 AKOLPOGLUM B, DOGANN O, BOZUYUKU, et al.High‐yield production of biohybrid microalgae for on‐demand cargo delivery[J]Adv Sci, 2020, 7( 16): 2001256.
doi: 10.1002/advs.202001256
22 YASAO, ERKOCP, ALAPANY, et al.Microalga-powered microswimmers toward active cargo delivery[J/OL]Adv Mater, 2018, 30( 45): e1804130.
doi: 10.1002/adma.201804130
23 LOSICD, YUY, AWM S, et al.Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies[J]Chem Commun, 2010, 46( 34): 6323-6325.
doi: 10.1039/c0cc01305f
24 ZHONGD, ZHANGD, XIET, et al.Biodegradable microalgae‐based carriers for targeted delivery and imaging‐guided therapy toward lung metastasis of breast cancer[J/OL]Small, 2020, 16( 20): e2000819.
doi: 10.1002/smll.202000819
25 NAGYJ A, CHANGS H, DVORAKA M, et al.Why are tumour blood vessels abnormal and why is it important to know?[J]Br J Cancer, 2009, 100( 6): 865-869.
doi: 10.1038/sj.bjc.6604929
26 BLAGOSKLONNYM V. Antiangiogenic therapy and tumor progression[J]Cancer Cell, 2004, 5( 1): 13-17.
doi: 10.1016/S1535-6108(03)00336-2
27 BARKERH E, PAGETJ T E, KHANA A, et al.The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[J]Nat Rev Cancer, 2015, 15( 7): 409-425.
doi: 10.1038/nrc3958
28 MAASA L, CARTERS L, WILEYTOE P, et al.Tumor vascular microenvironment determines responsiveness to photodynamic therapy[J]Cancer Res, 2012, 72( 8): 2079-2088.
doi: 10.1158/0008-5472.CAN-11-3744
29 CHENH, TIANJ, HEW, et al.H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J]J Am Chem Soc, 2015, 137( 4): 1539-1547.
doi: 10.1021/ja511420n
30 FANW, BUW, SHENB, et al.Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy[J]Adv Mater, 2015, 27( 28): 4155-4161.
doi: 10.1002/adma.201405141
31 SINGHS, SHARMAA, ROBERTSONG P. Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns[J]Cancer Res, 2012, 72( 22): 5663-5668.
doi: 10.1158/0008-5472.CAN-12-1527
32 ZHONGD, LIW, QIY, et al.Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxiafor FL/PA/MR imaging‐guided enhanced radio‐photodynamic synergetic therapy[J]Adv Funct Mater, 2020, 30( 17): 1910395.
doi: 10.1002/adfm.201910395
33 ZHOUT J, XINGL, FANY T, et al.Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy[J]J Control Release, 2019, 44-54.
doi: 10.1016/j.jconrel.2019.06.016
34 LEEC, LIMK, KIMS S, et al.Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer[J]J Control Release, 2019, 77-90.
doi: 10.1016/j.jconrel.2018.12.011
35 LIW, ZHONGD, HUAS, et al.Biomineralized biohybrid algae for tumor hypoxia modulation and cascade radio-photodynamic therapy[J]ACS Appl Mater Interfaces, 2020, 12( 40): 44541-44553.
doi: 10.1021/acsami.0c14400
36 HUNTT K, BURKEJ, BARBULA, et al.Wound healing[J]Science, 1999, 284( 5421): 1775.
doi: 10.1126/science.284.5421.1773d
37 BROUGHTONG, JANISJ E, ATTINGERC E. The basic science of wound healing[J]Plast Reconstr Surg, 2006, 117( 7 Suppl): 12S-34S.
doi: 10.1097/01.prs.0000225430.42531.c2
38 SEPEHRIPOURS, DHALIWALK, DHEANSAB. Hyperbaric oxygen therapy and intermittent ischaemia in the treatment of chronic wounds[J]Int Wound J, 2018, 15( 2): 310.
doi: 10.1111/iwj.12852
39 HEYBOERM, SHARMAD, SANTIAGOW, et al.Hyperbaric oxygen therapy: side effects defined and quantified[J]Adv Wound Care, 2017, 6( 6): 210-224.
doi: 10.1089/wound.2016.0718
40 LIW, WANGS, ZHONGD, et al.A bioactive living hydrogel: photosynthetic bacteria mediated hypoxia elimination and bacteria‐killing to promote infected wound healing[J]Adv Therap, 2021, 4( 1): 2000107.
doi: 10.1002/adtp.202000107
41 HARTT, MILNERR, CIFUA. Management of a diabetic foot[J]JAMA, 2017, 318( 14): 1387-1388.
doi: 10.1001/jama.2017.11700
42 GONZALEZF J, XIEC, JIANGC. The role of hypoxia-inducible factors in metabolic diseases[J]Nat Rev Endocrinol, 2019, 15( 1): 21-32.
doi: 10.1038/s41574-018-0096-z
43 CHENH, CHENGY, TIANJ, et al.Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes[J]Sci Adv, 2020, 6( 20): eaba4311.
doi: 10.1126/sciadv.aba4311
44 CENTENO-CERDASC, JARQUíN-CORDEROM, CHáVEZM N, et al.Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds[J]Acta Biomater, 2018, 184-194.
doi: 10.1016/j.actbio.2018.09.060
45 HENDRIJANTININ, SITALAKSMIR M, ARIM D A, et al.The expression of TNF-α, IL-1β, and IL-10 in the diabetes mellitus condition induced by the combination of spirulina and chitosan[J]Bali Med J, 2020, 9( 1): 22.
doi: 10.15562/bmj.v9i1.1625
46 CHAMORRO-CEVALLOSG, GARDU?O-SICILIANOL, BARRóNB L, et al.Chemoprotective effect of spirulina (arthrospira) against cyclophosphamide-induced mutagenicity in mice[J]Food Chem Toxicol, 2008, 46( 2): 567-574.
doi: 10.1016/j.fct.2007.08.039
47 CHAMORRO-CEVALLOS G. Aspectos nutricionales y toxicológicos de spirulina (arthrospira)[J]. Nutr Hosp, 2015, 32(1): 34-40
48 SCHENCKT L, HOPFNERU, CHáVEZM N, et al.Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering[J]Acta Biomater, 2015, 39-47.
doi: 10.1016/j.actbio.2014.12.012
49 CHáVEZM N, SCHENCKT L, HOPFNERU, et al.Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration[J]Biomaterials, 2016, 25-36.
doi: 10.1016/j.biomaterials.2015.10.014
[1] 旷文静,罗小波,王冏珂,曾昕. 梅–罗综合征患者的表征及其诊治[J]. 浙江大学学报(医学版), 2021, 50(2): 148-154.
[2] 王晨宇,王英男,汪存艺,施洁珺,王慧明. 组织工程修复颞下颌关节的关键因素研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 212-221.
[3] 应颖超,江佩芳. 瞬时受体电位 M2 型离子通道在神经系统疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 267-276.
[4] 韩恒毅,冯帆,李海涛. 表观遗传与肿瘤代谢研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 1-16.
[5] 陈菲,虞敏,钟永红,华雯,黄华琼. 中性粒细胞在哮喘中的地位和作用[J]. 浙江大学学报(医学版), 2021, 50(1): 123-130.
[6] 颜京,张婷婷,赵葵. 核医学分子影像探针应用于神经内分泌肿瘤的研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 131-137.
[7] 张明佺,潘俊辰,黄蓬. RAS基因与脂代谢在恶性肿瘤中的相互调控[J]. 浙江大学学报(医学版), 2021, 50(1): 17-22.
[8] 胡鑫暘,金洪传,朱丽媛. 谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制[J]. 浙江大学学报(医学版), 2021, 50(1): 32-40.
[9] 孟颖,王启扉,吕志民. 胆固醇代谢与肿瘤[J]. 浙江大学学报(医学版), 2021, 50(1): 23-31.
[10] 邵一鸣,苏力德,郝睿,王茜茜,那仁满都拉. 乙型肝炎病毒诱发肝细胞癌分子机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 113-122.
[11] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[12] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[13] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[14] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[15] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.