综述 |
|
|
|
|
瞬时受体电位 M2 型离子通道在神经系统疾病中的作用研究进展 |
应颖超( ),江佩芳( ) |
浙江大学医学院附属儿童医院神经内科,浙江 杭州 310052 |
|
Research progress on transient receptor potential melastatin 2 channel in nervous system diseases |
YING Yingchao( ),JIANG Peifang( ) |
Department of Neurology, the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China |
1 |
MALKOP, SYED MORTADZAS A, MCWILLIAMJ, et al.TRPM2 channel in microglia as a new player in neuroinflammation associated with a spectrum of central nervous system pathologies[J]Front pharmacol, 2019, 239.
doi: 10.3389/fphar.2019.00239
|
2 |
XIEY F, BELROSEJ C, LEIG, et al.Dependence of NMDA/GSK-3β mediated metaplasticity on TRPM2 channels at hippocampal CA3-CA1 synapses[J]Mol Brain, 2011, 4( 1): 44.
doi: 10.1186/1756-6606-4-44
|
3 |
JANGY, LEES H, LEEB, et al.TRPM2, a susceptibility gene for bipolar disorder, regulates glycogen synthase kinase-3 activity in the brain[J]J Neurosci, 2015, 35( 34): 11811-11823.
doi: 10.1523/JNEUROSCI.5251-14.2015
|
4 |
BAIJ Z, LIPSKIJ. Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture[J]NeuroToxicology, 2010, 31( 2): 204-214.
doi: 10.1016/j.neuro.2010.01.001
|
5 |
BELROSEJ C, XIEY F, GIERSZEWSKIL J, et al.Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons[J]Mol Brain, 2012, 5( 1): 11.
doi: 10.1186/1756-6606-5-11
|
6 |
LIX, JIANGL H. Multiple molecular mechanisms form a positive feedback loop driving amyloid β42 peptide-induced neurotoxicity via activation of the TRPM2 channel in hippocampal neurons[J]Cell Death Dis, 2018, 9( 2): 195.
doi: 10.1038/s41419-018-0270-1
|
7 |
KANEKOS, KAWAKAMIS, HARAY, et al.A critical role of TRPM2 in neuronal cell death by hydrogen peroxide[J]J Pharmacol Sci, 2006, 101( 1): 66-76.
doi: 10.1254/jphs.fp0060128
|
8 |
HILLK, TIGUEN J, KELSELLR E, et al.Characterisation of recombinant rat TRPM2 and a TRPM2-like conductance in cultured rat striatal neurones[J]Neuropharmacology, 2006, 50( 1): 89-97.
doi: 10.1016/j.neuropharm.2005.08.021
|
9 |
SUNY, SUKUMARANP, SELVARAJS, et al.TRPM2 and a TRPM2-like conductance in cultured rat striatal neurones[J]l, 2018, 55( 1): 409-420.
doi: 10.1007/s12035-016-0338-9
|
10 |
CHUNGK K H, FREESTONEP S, LIPSKIJ. Expression and functional properties of TRPM2 channels in dopaminergic neurons of the substantia nigra of the rat[J]J NeuroPhysiol, 2011, 106( 6): 2865-2875.
doi: 10.1152/jn.00994.2010
|
11 |
KRAFTR, GRIMMC, GROSSEK, et al.Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia[J]Am J Physiol-Cell Physiol, 2004, 286( 1): C129-C137.
doi: 10.1152/ajpcell.00331.2003
|
12 |
SMITHM A, HERSONP S, LEEK, et al.Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia[J]J Physiol, 2003, 547( 2): 417-425.
doi: 10.1113/jphysiol.2002.034561
|
13 |
JIANGL H, LIX, SYED MORTADZAS A, et al.The TRPM2 channel nexus from oxidative damage to Alzheimer’s pathologies: an emerging novel intervention target for age-related dementia[J]Ageing Res Rev, 2018, 67-79.
doi: 10.1016/j.arr.2018.07.002
|
14 |
OSTAPCHENKOV G, CHENM, GUZMANM S, et al.The transient receptor potential melastatin 2 (TRPM2) channel contributes to β-amyloid oligomer-related neurotoxicity and memory impairment[J]J Neurosci, 2015, 35( 45): 15157-15169.
doi: 10.1523/jneurosci.4081-14.2015
|
15 |
KOS Y, WANGS E, LEEH K, et al.Transient receptor potential melastatin 2 governs stress-induced depressive-like behaviors[J]Proc Natl Acad Sci U S A, 2019, 116( 5): 1770-1775.
doi: 10.1073/pnas.1814335116
|
16 |
KURINCZUKJ J, WHITE-KONINGM, BADAWIN. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy[J]Early Hum Dev, 2010, 86( 6): 329-338.
doi: 10.1016/j.earlhumdev.2010.05.010
|
17 |
MILLARL J, SHIL, HOERDER-SUABEDISSENA, et al.Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges[J]Front Cell Neurosci, 2017, 78.
doi: 10.3389/fncel.2017.00078
|
18 |
JIAJ, VERMAS, NAKAYAMAS, et al.Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke[J]J Cereb Blood Flow Metab, 2011, 31( 11): 2160-2168.
doi: 10.1038/jcbfm.2011.77
|
19 |
VERMAS, QUILLINANN, YANGY F, et al.TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death[J]NeuroSci Lett, 2012, 530( 1): 41-46.
doi: 10.1016/j.neulet.2012.09.044
|
20 |
SHIMIZUT, MACEYT A, QUILLINANN, et al.Androgen and PARP-1 regulation of TRPM2 channels after ischemic injury[J]J Cereb Blood Flow Metab, 2013, 33( 10): 1549-1555.
doi: 10.1038/jcbfm.2013.105
|
21 |
ALIMI, TEVESL, LIR, et al.Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death[J]J Neurosci, 2013, 33( 44): 17264-17277.
doi: 10.1523/jneurosci.1729-13.2013
|
22 |
SYED MORTADZAS A, WANGL, LID, et al.TRPM2 channel-mediated ROS-sensitive Ca(2+) signaling mechanisms in immune cells[J]Front Immunol, 2015, 407.
doi: 10.3389/fimmu.2015.00407
|
23 |
YEM, YANGW, AINSCOUGHJ F, et al.TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia[J/OL]Cell Death Dis, 2014, 5( 11): e1541.
doi: 10.1038/cddis.2014.494
|
24 |
ZHANK, YUP, LIUC, et al.Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury[J]Acta Pharmacol Sin, 2016, 37( 1): 4-12.
doi: 10.1038/aps.2015.141
|
25 |
LAIT W, ZHANGS, WANGY T. Excitotoxicity and stroke: identifying novel targets for neuroprotection[J]Prog NeuroBiol, 2014, 157-188.
doi: 10.1016/j.pneurobio.2013.11.006
|
26 |
MAIC, MANKOOH, WEIL, et al.TRPM2 channel: A novel target for alleviating ischaemia‐reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxic‐ischaemic brain damage[J]J Cell Mol Med, 2020, 24( 1): 4-12.
doi: 10.1111/jcmm.14679
|
27 |
ELTZSCHIGH K, ECKLET. Ischemia and reperfusion—from mechanism to translation[J]Nat Med, 2011, 17( 11): 1391-1401.
doi: 10.1038/nm.2507
|
28 |
DIETZR M, CRUZ-TORRESI, ORFILAJ E, et al.Reversal of global ischemia-induced cognitive dysfunction by delayed inhibition of TRPM2 ion channels[J]Transl Stroke Res, 2020, 11( 2): 254-266.
doi: 10.1007/s12975-019-00712-z
|
29 |
LIX, YANGW, JIANGL H. Alteration in Intracellular Zn2+ homeostasis as a result of TRPM2 channel activation contributes to ROS-induced hippocampal neuronal death[J]Front Mol Neurosci, 2017, 414.
doi: 10.3389/fnmol.2017.00414
|
30 |
STORKC J, LIY V. Rising zinc: a significant cause of ischemic neuronal death in the CA1 region of rat hippocampus[J]J Cereb Blood Flow Metab, 2009, 29( 8): 1399-1408.
doi: 10.1038/jcbfm.2009.64
|
31 |
SHUTTLEWORTHC W, WEISSJ H. Zinc: new clues to diverse roles in brain ischemia[J]Trends Pharmacol Sci, 2011, 32( 8): 480-486.
doi: 10.1016/j.tips.2011.04.001
|
32 |
LIX, JIANGL H. A critical role of the transient receptor potential melastatin 2 channel in a positive feedback mechanism for reactive oxygen species-induced delayed cell death[J]J Cell Physiol, 2019, 234( 4): 3647-3660.
doi: 10.1002/jcp.27134
|
33 |
ERKKINENM G, KIMM O, GESCHWINDM D. Clinical neurology and epidemiology of the major neurodegenerative diseases[J]Cold Spring Harb Perspect Biol, 2018, 10( 4): a033118.
doi: 10.1101/cshperspect.a033118
|
34 |
HASHIMOTOM, ROCKENSTEINE, CREWSL, et al.Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases[J]Neuromolecular Med, 2003, 4( 1-2): 21-36.
doi: 10.1385/nmm:4:1-2:21
|
35 |
TIRABOSCHIP, HANSENL A, THALL J, et al.The importance of neuritic plaques and tangles to the development and evolution of AD[J]Neurology, 2004, 62( 11): 1984-1989.
doi: 10.1212/01.wnl.0000129697.01779.0a
|
36 |
BOURASC, HOFP R, GIANNAKOPOULOSP, et al.Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital[J]Cereb Cortex, 1994, 4( 2): 138-150.
doi: 10.1093/cercor/4.2.138
|
37 |
BACHURINS O, BOVINAE V, USTYUGOVA A. Drugs in clinical trials for Alzheimer’s disease: the major trends[J]Med Res Rev, 2017, 37( 5): 1186-1225.
doi: 10.1002/med.21434
|
38 |
BLENNOWK, ZETTERBERGH. Biomarkers for Alzheimer’s disease: current status and prospects for the future[J]J Intern Med, 2018, 284( 6): 643-663.
doi: 10.1111/joim.12816
|
39 |
SELKOED J, HARDYJ. The amyloid hypothesis of Alzheimer’s disease at 25 years[J]EMBO Mol Med, 2016, 8( 6): 595-608.
doi: 10.15252/emmm.201606210
|
40 |
JANKOWSKYJ L, XUG, FROMHOLTD, et al.Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease[J]l, 2003, 62( 12): 1220-1227.
doi: 10.1093/jnen/62.12.1220
|
41 |
DE FELICEF G, VELASCOP T, LAMBERTM P, et al.Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine[J]J Biol Chem, 2007, 282( 15): 11590-11601.
doi: 10.1074/jbc.M607483200
|
42 |
LAFERLAF M. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease[J]Nat Rev Neurosci, 2002, 3( 11): 862-872.
doi: 10.1038/nrn960
|
43 |
OLAHM E, JACKSONM F, LIH, et al.Ca2+-dependent induction of TRPM2 currents in hippocampal neurons[J]J Physiol, 2009, 587( 5): 965-979.
doi: 10.1113/jphysiol.2008.162289
|
44 |
?VEY? S, NAZ?RO?LUM. Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer’s disease[J]J Receptor Signal Transduct, 2021, 41( 3): 273-283.
doi: 10.1080/10799893.2020.1806321
|
45 |
REGENF, HELLMANN-REGENJ, COSTANTINIE, et al.Neuroinflammation and Alzheimer’s disease: implications for microglial activation[J]Curr Alzheimer Res, 2017, 14( 11): 1140-1148.
doi: 10.2174/1567205014666170203141717
|
46 |
AHMADM H, FATIMAM, MONDALA C. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches[J]J Clin Neurosci, 2019, 6-11.
doi: 10.1016/j.jocn.2018.10.034
|
47 |
WANGJ, JACKSONM F, XIEY F. Glia and TRPM2 channels in plasticity of central nervous system and Alzheimer’s diseases[J]Neural Plast, 2016, 168-0905.
doi: 10.1155/2016/1680905
|
48 |
LEEM, CHOT, JANTARATNOTAIN, et al.Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases[J]FASEB J, 2010, 24( 7): 2533-2545.
doi: 10.1096/fj.09-149997
|
49 |
SAHARANS, MANDALP K. The emerging role of glutathione in Alzheimer’s disease[J]J Alzheimer Dis, 2014, 40( 3): 519-529.
doi: 10.3233/jad-132483
|
50 |
CALHOUNJ D, HUFFMANA M, BELLINSKII, et al.CACNA1H variants are not a cause of monogenic epilepsy[J]Human Mutat, 2020, 41( 6): 1138-1144.
doi: 10.1002/humu.24017
|
51 |
DANIILG, FERNANDES-ROSAF L, CHEMINJ, et al.CACNA1H mutations are associated with different forms of primary aldosteronism[J]EBioMedicine, 2016, 225-236.
doi: 10.1016/j.ebiom.2016.10.002
|
52 |
LEMKEJ R, LALD, REINTHALERE M, et al.Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes[J]Nat Genet, 2013, 45( 9): 1067-1072.
doi: 10.1038/ng.2728
|
53 |
VIEIRAM M, NGUYENT A, WUK, et al.An epilepsy-associated GRIN2A rare variant disrupts CaMKIIα phosphorylation of GluN2A and NMDA receptor trafficking[J]Cell Rep, 2020, 32( 9): 108104.
doi: 10.1016/j.celrep.2020.108104
|
54 |
JANGY, LEEB, KIMH, et al.Trpm2 ablation accelerates protein aggregation by impaired ADPR and autophagic clearance in the brain[J]Mol Neurobiol, 2019, 56( 5): 3819-3832.
doi: 10.1007/s12035-018-1309-0
|
55 |
HUH, ZHUT, GONGL, et al.Transient receptor potential melastatin 2 contributes to neuroinflammation and negatively regulates cognitive outcomes in a pilocarpine-induced mouse model of epilepsy[J]Int ImmunoPharmacol, 2020, 106824.
doi: 10.1016/j.intimp.2020.106824
|
56 |
ZHENGQ, ZHUT, HUH, et al.TRPM2 ion channel is involved in the aggravation of cognitive impairment and down regulation of epilepsy threshold in pentylenetetrazole-induced kindling mice[J]Brain Res Bull, 2020, 48-60.
doi: 10.1016/j.brainresbull.2019.11.018
|
57 |
VANDE VELDEC, CIZEAUJ, DUBIKD, et al.BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore[J]Mol Cell Biol, 2000, 20( 15): 5454-5468.
doi: 10.1128/mcb.20.15.5454-5468.2000
|
58 |
SUSINS A, LORENZOH K, ZAMZAMIN, et al.Molecular characterization of mitochondrial apoptosis-inducing factor[J]Nature, 1999, 397( 6718): 441-446.
doi: 10.1038/17135
|
59 |
ZHUT, ZHAOY, HUH, et al.TRPM2 channel regulates cytokines production in astrocytes and aggravates brain disorder during lipopolysaccharide-induced endotoxin sepsis[J]Int ImmunoPharmacol, 2019, 105836.
doi: 10.1016/j.intimp.2019.105836
|
60 |
BAILEYJ N, PATTERSONC, DE NIJSL, et al.EFHC1 variants in juvenile myoclonic epilepsy: reanalysis according to NHGRI and ACMG guidelines for assigning disease causality[J]Genet Med, 2017, 19( 2): 144-156.
doi: 10.1038/gim.2016.86
|
61 |
SUZUKIT, DELGADO-ESCUETAA V, AGUANK, et al.Mutations in EFHC1 cause juvenile myoclonic epilepsy[J]Nat Genet, 2004, 36( 8): 842-849.
doi: 10.1038/ng1393
|
62 |
LOUCKSC M, PARKK, WALKERD S, et al.EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling[J/OL]eLife, 2019, e37271.
doi: 10.7554/eLife.37271
|
63 |
KATANOM, NUMATAT, AGUANK, et al.The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death[J]Cell Calcium, 2012, 51( 2): 179-185.
doi: 10.1016/j.ceca.2011.12.011
|
64 |
MAHMUDAN A, YOKOYAMAS, MUNESUET, et al.One single nucleotide polymorphism of the TRPM2 channel gene identified as a risk factor in bipolar disorder associates with autism spectrum disorder in a Japanese population[J]Diseases, 2020, 8( 1): 4.
doi: 10.3390/diseases8010004
|
65 |
BELROSEJ C, JACKSONM F. TRPM2: a candidate therapeutic target for treating neurological diseases[J]Acta Pharmacol Sin, 2018, 39( 5): 722-732.
doi: 10.1038/aps.2018.31
|
66 |
HARAGUCHIK, KAWAMOTOA, ISAMIK, et al.TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice[J]J Neuroscience, 2012, 32( 11): 3931-3941.
doi: 10.1523/JNEUROSCI.4703-11.2012
|
67 |
HERMOSURAM C, CUIA M, GOR C V, et al.Altered functional properties of a TRPM2 variant in Guamanian ALS and PD[J]Proc Natl Acad Sci U S A, 2008, 105( 46): 18029-18034.
doi: 10.1073/pnas.0808218105
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|