Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (2): 162-170    DOI: 10.3724/zdxbyxb-2021-0099
专题报道     
白介素-17 诱导自噬促进破骨前体细胞分化的机制
沈烨琦(),王中秀,谭静怡,钟佳慧,陈莉丽()
浙江大学医学院附属第二医院牙周病专科,浙江 杭州 310009
TRAF6/ERK/p38 pathway is involved in interleukin-17-mediated autophagy to promote osteoclast precursor cell differentiation
SHEN Yeqi(),WANG Zhongxiu,TAN Jingyi,ZHONG Jiahui,CHEN Lili()
Department of Periodontology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
 全文: PDF(4742 KB)   HTML( 20 )
摘要:

目的:探讨白介素-17(IL-17)诱导的自噬及其相关蛋白在促进牙槽骨破坏过程中的具体机制。方法:对照组以含30?ng/mL巨噬细胞集落刺激因子、50?ng/mL核因子κB 受体活化因子配体(RANKL)的培养基诱导小鼠骨髓来源巨噬细胞(BMM),IL-17组分别以 0.01、0.1、1.0、10 ng/mL IL-17 处理,采用抗酒石酸酸性磷酸酶(TRAP)染色观察 TRAP 阳性多核破骨细胞;鬼笔环肽荧光染色检测肌动蛋白环周长;甲苯胺蓝染色分析骨吸收陷窝形成情况。另设对照组使用含50?ng/mL RANKL 的培养基诱导 RAW264.7 细胞,IL-17组分别以 0.01、0.1、1.0、10?ng/mL的 IL-17 处理,采用蛋白质印迹法检测不同浓度 IL-17 处理后自噬相关蛋白 Beclin-1、微管相关蛋白 1 轻链3(LC3)及破骨细胞相关蛋白 c-fos、活化 T 细胞核因子 1(NFATc1)的表达;检测1.0?ng/mL IL-17 处理及加入自噬抑制剂 3-MA 后 RAW264.7 细胞 LC3、NFATc1、TRAF6/ERK/p38 信号通路相关蛋白的表达。结果:0.01、0.1、1.0?ng/mL IL-17 处理 BMM 后,TRAP 阳性多核破骨细胞数量、肌动蛋白环周长以及骨吸收陷窝面积较对照组均增加,且1.0?ng/mL IL-17 处理 RAW264.7 细胞后,c-fos、NFATc1、Beclin-1、LC3、TRAF6、磷酸化 ERK、磷酸化 p38 蛋白表达均上调(均P<0.05);而采用自噬抑制剂 3-MA 处理后,LC3、NFATc1、TRAF6、磷酸化 ERK、磷酸化 p38 的表达水平均下降(均P<0.05)。结论:IL-17 可促进 Beclin-1、LC3 等自噬关键蛋白表达,增强破骨前体细胞的分化能力,TRAF6/ERK/p38 信号通路参与该过程。

关键词: 破骨细胞细胞分化白介素-17自噬TRAF6/ERK/p38 通路    
Abstract:

Objective: To investigate the effects of interleukin (IL)-17-mediated autophagy on the TNF receptor associated factor (TRAF6)/extracellular signal-regulated kinase (ERK)/p38 pathway and osteoclast differentiation. Methods:Mouse bone marrow-derived macrophages (BMM) were cultured with a medium containing 30?ng/mL macrophage colony stimulating factor and 50?ng/mL receptor activator of nuclear factor-kappa B ligard (RANKL), and IL-17 (0.01, 0.1, 1.0, 10?ng/mL) was added for intervention (IL-17 group). Tartrate-resistant acid phosphatase (TRAP) staining was used to observe TRAP positive multinucleated cells; phalloidin fluorescent staining was used to detect actin ring circumference; toluidine blue staining was used to analyze bone resorption lacuna formation. To further examine the mechanism of the effect of IL-17-mediated autophagy on the differentiation of osteoclasts, the control group used 50?ng/mL RANKL medium to culture mouse macrophage RAW264.7 cells, while the IL-17 group was treated with IL-17 (0.01, 0.1, 1.0, 10?ng/mL). Western blot was used to detect the expression of autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) and osteoclast-related proteins c-fos and nuclear factor of activated T cell 1 (NFATc1) after treatment with different concentrations of IL-17. The expression of LC3, NFATc1, TRAF6/ERK/p38 signaling pathway related proteins were detected in 1.0 ?ng/mL IL-17 and autophagy inhibitor 3-MA group. Results:The number of TRAP positive multinucleated cells, the circumference of the actin ring and the area of bone resorption lacuna in IL-17 group treated with IL-17 (0.01, 0.1, 1.0?ng/mL) were significantly higher than those in the control group. In IL-17 treated RAW264.7 cells, the expression of c-fos, NFATc1, Beclin-1, LC3, TRAF6, p-ERK, and p-p38 was all significantly up-regulated (all P <0.05). After treatment with the autophagy inhibitor 3-MA, the expression levels of LC3, NFATc1, TRAF6, p-ERK, and p-p38 all decreased significantly (all P <0.05). Conclusion:IL-17 can promote the expression of autophagy proteins and enhance the differentiation ability of osteoclast precursor cells, and the TRAF6/ERK/p38 signaling pathway may be involved in this process.

Key words: Osteoclast    Cell differentiation    Interleukin-17    Autophagy    TRAF6/ERK/p38 pathway
收稿日期: 2021-01-14 出版日期: 2021-06-18
CLC:  R781.4  
基金资助: 国家自然科学基金(81771072,81800972)
通讯作者: 陈莉丽     E-mail: 21918660@zju.edu.cn;chenlili_1030@zju.edu.cn
作者简介: 沈烨琦,硕士研究生,主要从事牙周炎发生发展机制研究;E-mail:21918660@zju.edu.cn;https://orcid.org/0000-0003-3265-6787
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
沈烨琦
王中秀
谭静怡
钟佳慧
陈莉丽

引用本文:

沈烨琦,王中秀,谭静怡,钟佳慧,陈莉丽. 白介素-17 诱导自噬促进破骨前体细胞分化的机制[J]. 浙江大学学报(医学版), 2021, 50(2): 162-170.

SHEN Yeqi,WANG Zhongxiu,TAN Jingyi,ZHONG Jiahui,CHEN Lili. TRAF6/ERK/p38 pathway is involved in interleukin-17-mediated autophagy to promote osteoclast precursor cell differentiation. J Zhejiang Univ (Med Sci), 2021, 50(2): 162-170.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0099        http://www.zjujournals.com/med/CN/Y2021/V50/I2/162

图 1  3-MA 及不同浓度IL-17 处理后 RAW264.7 细胞增殖活性变化
图 2  不同浓度 IL-17 处理小鼠骨髓来源巨噬细胞后 TRAP 染色结果
图 3  不同浓度 IL-17 处理小鼠骨髓来源巨噬细胞后肌动蛋白环染色结果
图 4  不同浓度IL-17处理小鼠骨髓来源巨噬细胞后骨吸收陷窝的变化
图 5  不同浓度 IL-17 处理破骨细胞相关蛋白表达变化A:c-fos 蛋白表达电泳图;B:NFATc1 蛋白表达电泳图.IL:白介素;NFATc:活化 T 细胞核因子;GAPDH: 甘油醛-3-磷酸脱氢酶.

组 别

n

c-fos

NFATc1

Beclin-1

LC3

对照组

3

1.000±0.026

1.000±0.028

1.000±0.012

1.000±0.020

IL-7 0.01 ng/mL

3

1.068±0.100*

1.142±0.039**

1.070±0.059*

1.053±0.043*

0.1 ng/mL

3

1.127±0.136*

1.121±0.085*

1.050±0.031*

1.053±0.051*

1.0 ng/mL

3

1.162±0.101*

1.146±0.034**

1.046±0.032*

1.168±0.089*

10 ng/mL

3

0.800±0.116*

0.900±0.048*

0.789±0.153*

0.827±0.095*

表 1  不同浓度 IL-17 处理后破骨细胞分化和自噬相关蛋白表达量比较
图 6  IL-17 对自噬相关蛋白表达的影响
图 7  自噬抑制剂对破骨细胞 LC3、NFATc1 及 TRAF6/ERK/p38 通路相关蛋白表达的影响“-”:无;“+”:有.LC3:微管相关蛋白 1 轻链 3;NFATc:活化 T 细胞核因子;TRAF:肿瘤坏死因子受体相关因子;ERK:胞外信号调节激酶;GAPDH: 甘油醛-3-磷酸脱氢酶; IL:白介素.

组 别

n

LC3

NFATc1

TRAF6

磷酸化 ERK

磷酸化 p38

对照组

3

1.000±0.027

1.000±0.038

1.000±0.017

1.000±0.025

1.000±0.023

IL-17 组

3

1.337±0.099**

1.106±0.061*

1.397±0.084**

1.090±0.042*

1.211±0.115*

3-MA 组

3

0.600±0.051**

0.673±0.021**

0.705±0.016**

0.800±0.023**

0.536±0.090**

IL-17+3-MA 组

3

0.612±0.089**

0.757±0.038**

0.754±0.039**

0.873±0.037**

0.719±0.041**

表 2  自噬抑制剂处理后破骨细胞 LC3、NFATc1、TRAF6、磷酸化 ERK 及磷酸化 p38 蛋白表达量比较
1 BUNTEK, BEIKLERT. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases[J]Int J Mol Sci, 2019, 20( 14): 3394.
doi: 10.3390/ijms20143394
2 REYNOLDSJ M, ANGKASEKWINAIP, DONGC. IL-17 family member cytokines: regulation and function in innate immunity[J]Cytokine Growth Factor Rev, 2010, 21( 6): 413-423.
doi: 10.1016/j.cytogfr.2010.10.002
3 SONGL, TANJ, WANGZ, et al.Interleukin?17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages[J]Mol Med Report, 2019, 19( 6): 4743-4752.
doi: 10.3892/mmr.2019.10155
4 SOYSAN S, ALLESN. Osteoclast function and bone-resorbing activity: an overview[J]Biochem BioPhys Res Commun, 2016, 476( 3): 115-120.
doi: 10.1016/j.bbrc.2016.05.019
5 INDOY, TAKESHITAS, ISHIIK A, et al.Metabolic regulation of osteoclast differentiation and function[J]J Bone Miner Res, 2013, 28( 11): 2392-2399.
doi: 10.1002/jbmr.1976
6 BAR-SHAVITZ. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell[J]J Cell Biochem, 2007, 102( 5): 1130-1139.
doi: 10.1002/jcb.21553
7 ONOT, NAKASHIMAT. Recent advances in osteoclast biology[J]Histochem Cell Biol, 2018, 149( 4): 325-341.
doi: 10.1007/s00418-018-1636-2
8 TEVLINR, MCARDLEA, CHANC K F, et al.Osteoclast derivation from mouse bone marrow[J]J Vis Exp, 2014, 6( 93): 52-56.
doi: 10.3791/52056
9 WALSHM C, LEEJ E, CHOIY. Tumor necrosis factor receptor-associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system[J]Immunol Rev, 2015, 266( 1): 72-92.
doi: 10.1111/imr.12302
10 HOTA, ZRIOUALS, TOHM L, et al.IL-17A- versus IL-17F-induced intracellular signal transduction pathways and modulation by IL-17RA and IL-17RC RNA interference in rheumatoid synoviocytes[J]Ann Rheum Dis, 2011, 70( 2): 341-348.
doi: 10.1136/ard.2010.132233
11 XU H D, QIN Z H. Beclin 1, Bcl-2 and autophagy[J]. Adv Exp Med Biol, 2019, 1206: 109-126
12 MAEJIMAY, ISOBEM, SADOSHIMAJ. Regulation of autophagy by Beclin 1 in the heart[J]J Mol Cell Cardiol, 2016, 19-25.
doi: 10.1016/j.yjmcc.2015.10.032
13 SHIC S, KEHRLJ H. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy[J]Sci Signal, 2010, 3( 123): ra42.
doi: 10.1126/scisignal.2000751
14 XING L, BOYCE B F. RANKL-based osteoclastogenic assays from murine bone marrow cells[J]. Methods Mol Biol, 2014, 1130: 307-313
15 KITAMIS, TANAKAH, KAWATOT, et al.IL-17A suppresses the expression of bone resorption-related proteinases and osteoclast differentiation via IL-17RA or IL-17RC receptors in RAW264.7 cells[J]Biochimie, 2010, 92( 4): 398-404.
doi: 10.1016/j.biochi.2009.12.011
16 HALEA N, LEDBETTERD J, GAWRILUKT R, et al.Autophagy: regulation and role in development[J]Autophagy, 2013, 9( 7): 951-972.
doi: 10.4161/auto.24273
17 KINANED F, STATHOPOULOUP G, PAPAPANOUP N. Periodontal diseases[J]Nat Rev Dis Primers, 2017, 3( 1): 17038.
doi: 10.1038/nrdp.2017.38
18 CEKICIA, KANTARCIA, HASTURKH, et al.Inflammatory and immune pathways in the pathogenesis of periodontal disease[J]Periodontol 2000, 2014, 64( 1): 57-80.
doi: 10.1111/prd.12002
19 BOYLEW J, SIMONETW S, LACEYD L. Osteoclast differentiation and activation[J]Nature, 2003, 423( 6937): 337-342.
doi: 10.1038/nature01658
20 YANG J, BI X, LI M. Osteoclast differentiation assay[J]. Methods Mol Biol, 2019, 1882: 143-148
21 曾 立, 耿 欢, 邢更彦. RAW264.7 细胞与骨髓源巨噬细胞向破骨细胞分化特性的比较[J]. 中华灾害救援医学, 2018, 6(1): 30-34
ZENG Li, GENG Huan, XING Gengyan. Comparison between bone marrow-derived macrophages and RAW 264.7 cells in inducing osteoclast differentiation[J]. Chinese Journal of Disaster Medicine, 2018, 6(1): 30-34. (in Chinese)
22 CHENGW C, HUGHESF J, TAAMSL S. The presence, function and regulation of IL-17 and Th17 cells in periodontitis[J]J Clin Periodontol, 2014, 41( 6): 541-549.
doi: 10.1111/jcpe.12238
23 WIJEKOONS, BWALYAE C, FANGJ, et al.Chronological differential effects of pro-inflammatory cytokines on RANKL-induced osteoclast differentiation of canine bone marrow-derived macrophages[J]J Vet Med Sci, 2017, 79( 12): 2030-2035.
doi: 10.1292/jvms.17-0393
24 SPRANGERSS, SCHOENMAKERT, CAOY, et al.Different blood-borne human osteoclast precursors respond in distinct ways to IL-17A[J]J Cell Physiol, 2016, 231( 6): 1249-1260.
doi: 10.1002/jcp.25220
25 YAGOT, NANKEY, ICHIKAWAN, et al.IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-α antibody: a novel mechanism of osteoclastogenesis by IL-17[J]J Cell Biochem, 2009, 108( 4): 947-955.
doi: 10.1002/jcb.22326
26 YANGM, LIC, YANGS, et al.Mitochondria-associated ER membranes-the origin site of autophagy[J]Front Cell Dev Biol, 2020,,
doi: 10.3389/fcell.2020.00595
27 KED, FUX, XUEY, et al.IL-17A regulates the autophagic activity of osteoclast precursors through RANKL-JNK1 signaling during osteoclastogenesis in vitro[J]Biochem BioPhys Res Commun, 2018, 497( 3): 890-896.
doi: 10.1016/j.bbrc.2018.02.164
28 LINN Y, CHENC W, KAGWIRIAR, et al.Inactivation of autophagy ameliorates glucocorticoid-induced and ovariectomy-induced bone loss[J]Ann Rheum Dis, 2016, 75( 6): 1203-1210.
doi: 10.1136/annrheumdis-2015-207240
29 JIL, GAOJ, KONGR, et al.Autophagy exerts pivotal roles in regulatory effects of 1α, 25-(OH)2D3 on the osteoclastogenesis[J]Biochem BioPhys Res Commun, 2019, 511( 4): 869-874.
doi: 10.1016/j.bbrc.2019.02.114
30 ADAMOPOULOSI E, CHAOC C, GEISSLERR, et al.Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors[J]Arthritis Res Ther, 2010, 12( 1): R29.
doi: 10.1186/ar2936
31 OKAMOTOK, NAKASHIMAT, SHINOHARAM, et al.Osteoimmunology: the conceptual framework unifying the immune and skeletal systems[J]Physiol Rev, 2017, 97( 4): 1295-1349.
doi: 10.1152/physrev.00036.2016
32 HUANGZ, PEIX, GRAVESD T. The interrelationship between diabetes, IL-17 and bone loss[J]Curr Osteoporos Rep, 2020, 18( 1): 23-31.
doi: 10.1007/s11914-020-00559-6
33 ASAGIRIM, TAKAYANAGIH. The molecular understanding of osteoclast differentiation[J]Bone, 2007, 40( 2): 251-264.
doi: 10.1016/j.bone.2006.09.023
34 BOYCEB F. Advances in the regulation of osteoclasts and osteoclast functions[J]J Dent Res, 2013, 92( 10): 860-867.
doi: 10.1177/0022034513500306
35 QIANZ, ZHONGZ, NIS, et al.Cytisine attenuates bone loss of ovariectomy mouse by preventing RANKL‐induced osteoclastogenesis[J]J Cell Mol Med, 2020, 24( 17): 10112-10127.
doi: 10.1111/jcmm.15622
[1] 毛红美,孙毅. 原纤毛及其在肿瘤发生发展中的作用[J]. 浙江大学学报(医学版), 2021, 50(2): 245-260.
[2] 舒敏,张文哲,金湘博,曾玲晖,项迎春. 敲除Sirt3后激活自噬对阿尔茨海默病有保护作用[J]. 浙江大学学报(医学版), 2020, 49(6): 750-757.
[3] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[4] 吴忧,梁顺利,徐彬,张荣博,徐林胜. 姜黄素保护帕金森病多巴胺能神经元的机制研究[J]. 浙江大学学报(医学版), 2018, 47(5): 480-486.
[5] 王青梅,舒敏,徐千姿,谢一乙,阮盛哲,王健达,曾玲晖. 和厚朴酚对癫痫小鼠学习记忆能力的改善作用[J]. 浙江大学学报(医学版), 2018, 47(5): 450-456.
[6] 朱锋,范苗,徐孜惟,蔡依廷,陈益臻,余双,曾玲晖. 雷帕霉素对帕金森病小鼠的保护作用[J]. 浙江大学学报(医学版), 2018, 47(5): 465-472.
[7] 吕丹丹,应可净. 自噬在肺动脉高压发生和发展中的调节作用[J]. 浙江大学学报(医学版), 2018, 47(2): 207-212.
[8] 魏振龙,石文贵,陈克明,周建,王鸣刚. 淫羊藿素通过CXCR4/SDF-1信号通路促进小鼠成骨细胞成熟和矿化[J]. 浙江大学学报(医学版), 2017, 46(6): 571-577.
[9] 朱保应,周建,高玉海,石文贵,魏振龙,李文苑,王媛媛,陈克明. 低频率低强度电磁场对体外培养大鼠颅骨成骨细胞成熟和矿化的影响[J]. 浙江大学学报(医学版), 2017, 46(6): 585-592.
[10] 张斌斌 等. 抑制哺乳动物雷帕霉素靶蛋白信号通路对慢性脑缺血小鼠认知功能的改善和机制[J]. 浙江大学学报(医学版), 2017, 46(4): 405-412.
[11] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[12] 方清清 等. 低频脉冲电磁场促进成骨细胞分化的基因调节和非基因调节探究[J]. 浙江大学学报(医学版), 2016, 45(6): 568-574.
[13] 郑江江 等. 肿瘤相关成纤维细胞CD10表达在结直肠腺瘤癌变和复发中的意义[J]. 浙江大学学报(医学版), 2016, 45(4): 335-341.
[14] 刘巧云 等. 锌与自噬[J]. 浙江大学学报(医学版), 2016, 45(3): 308-314.
[15] 陈晓 等. 人胚胎干细胞向肌腱细胞分化方法的专家共识[J]. 浙江大学学报(医学版), 2016, 45(2): 105-111.