Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (5): 666-673    DOI: 10.3724/zdxbyxb-2021-0063
综述     
大麻素1型受体正电子发射断层显像在神经精神疾病中的应用进展
马丽娟1,吴爽1,张凯2,田梅1,张宏1,3,4,*()
1.浙江大学医学院附属第二医院核医学科 浙江大学医学PET中心 浙江省医学分子影像重点实验室 浙江大学核医学与分子影像研究所,浙江 杭州 310009
2.日本理化学研究所生命机能研究中心健康与病态科学研究室,日本 神户 650-0047
3.浙江大学生物医学工程教育部重点实验室,浙江 杭州 310027
4.浙江大学生物医学工程与仪器科学学院,浙江 杭州 310027
Progress on the application of positron emission tomography imaging of cannabinoid type 1 receptor in neuropsychiatric diseases
MA Lijuan1,WU Shuang1,ZHANG Kai2,TIAN Mei1,ZHANG Hong1,3,4,*()
1. Department of Nuclear Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University Medical PET Center, Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou 310009, China;
2. Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan;
3. Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China;
4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2256 KB)   HTML( 12 )
摘要:

大麻素1型受体(CB1R)作为内源性大麻素系统的主要成员,是中枢神经系统表达最丰富的受体之一。CB1R主要分布在突触前神经元的轴突末梢,参与神经元兴奋性及突触可塑性调节,在多种神经精神疾病的致病机制中发挥着重要作用。近年来CB1R放射性配体的不断研发及正电子发射断层成像(PET)等分子影像技术的日渐成熟,有助于实现CB1R在中枢神经系统中表达与分布的在体可视化。目前,CB1R PET显像可以有效评估亨廷顿病及精神分裂症等神经精神疾病患者体内的CB1R水平变化及其与病情严重程度之间的联系,从而为神经精神疾病诊治提供新的见解。本文就CB1R PET显像在阿尔茨海默病、帕金森病、亨廷顿病、精神分裂症、创伤后应激障碍、大麻使用障碍及抑郁症中的应用进展进行综述。

关键词: 大麻素1型受体正电子发射断层成像神经退行性变性疾病精神疾病精神分裂症综述    
Abstract:

Cannabinoid type 1 receptor (CB1R), as the major member of the endocannabinoid system, is among the most abundant receptors expressed in the central nervous system. CB1R is mainly located on the axon terminals of presynaptic neurons and participate in the modulation of neuronal excitability and synaptic plasticity, playing an important role in the pathogenesis of various neuropsychiatric diseases. In recent years, the consistent development of CB1R radioligands and the maturity of molecular imaging techniques, particularly positron emission tomography (PET) may help to visualize the expression and distribution of CB1R in central nervous system in vivo. At present, CB1R PET imaging can effectively evaluate the changes of CB1R levels in neuropsychiatric diseases such as Huntington’s disease and schizophrenia, and its correlation with the disease severity, therefore providing new insights for the diagnosis and treatment of neuropsychiatric diseases. This article reviews the application of CB1R PET imaging in Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, schizophrenia, post-traumatic stress disorder, cannabis use disorder and depression.

Key words: Cannabinoid type 1 receptor    Positron emission tomography    Neurodegene-rative disease    Mental disease    Schizophrenia    Review
收稿日期: 2021-03-08 出版日期: 2021-12-29
:  R445  
基金资助: 国家自然科学基金(81725009,82030049,32027802)
通讯作者: 张宏     E-mail: hzhang21@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马丽娟
吴爽
张凯
田梅
张宏

引用本文:

马丽娟,吴爽,张凯,田梅,张宏. 大麻素1型受体正电子发射断层显像在神经精神疾病中的应用进展[J]. 浙江大学学报(医学版), 2021, 50(5): 666-673.

MA Lijuan,WU Shuang,ZHANG Kai,TIAN Mei,ZHANG Hong. Progress on the application of positron emission tomography imaging of cannabinoid type 1 receptor in neuropsychiatric diseases. J Zhejiang Univ (Med Sci), 2021, 50(5): 666-673.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0063        https://www.zjujournals.com/med/CN/Y2021/V50/I5/666

显像剂名称

显像剂

类型

亲和力

Ki值(nmol/L)

脂水分布系数logD值*

脑内主要分布

优点

缺点

在神经精神疾病中摄取情况

11C-OMAR[19-24]

拮抗剂

2.05

3.30

苍白球、扣带回、壳核、海马、小脑、皮层

较强选择性、亲和力及特异性,可逆,洗脱快

脑摄取较少

精神分裂症摄取增加或摄取减少

创伤后应激障碍摄取增加

大麻使用障碍摄取减少

11C-SD5024[20]

拮抗剂

0.47

3.79

额叶、顶叶、颞叶、扣带回、尾状核、小脑

强特异性,中等亲和力及脑摄取

洗脱较慢

18F-MK-9470[2025-31]

反向激动剂

0.10

4.70

皮层、海马、尾状核、壳核、小脑

较强选择性及脑摄取,强亲和力,中度特异性,稳定

洗脱较慢

阿尔茨海默病摄取未见差异

帕金森病摄取减少

亨廷顿病摄取减少

精神分裂症摄取增加

大麻使用障碍摄取减少

18F-FMPEP-d2[2032-35]

反向激动剂

0.11

4.20

前额叶皮层、壳核、海马、小脑

强选择性、脑摄取、亲和力、特异性及稳定性

易脱氟及洗脱较慢

阿尔茨海默病摄取减少

精神分裂症摄取减少

大麻使用障碍摄取减少

11C-MePPEP[203436]

反向激动剂

0.11

4.80

前额叶皮层、枕叶皮层、海马、壳核、丘脑、小脑

强脑摄取、特异性及亲和力,稳定及可逆

洗脱慢

精神分裂症摄取减少

18F-FPATPP[18]

反向激动剂

顶颞叶皮层、纹状体、额叶皮层、海马、小脑

强选择性、特异性及稳定性,低脱氟,洗脱快

合成复杂

表 1  第二代大麻素1型受体正电子发射断层成像显像剂特点及临床应用
1 HOUL, RONGJ, HAIDERA, et al.Positron emission tomography imaging of the endocannabinoid system: opportunities and challenges in radiotracer development[J]J Med Chem, 2021, 64( 1): 123-149.
doi: 10.1021/acs.jmedchem.0c01459
2 CRISTINOL, BISOGNOT, DI MARZOV. Cannabinoids and the expanded endocannabinoid system in neurological disorders[J]Nat Rev Neurol, 2020, 16( 1): 9-29.
doi: 10.1038/s41582-019-0284-z
3 IBARRA-LECUEI, PILAR-CUéLLARF, MUGURUZAC, et al.The endocannabinoid system in mental disorders: evidence from human brain studies[J]Biochem Pharmacol, 2018, 97-107.
doi: 10.1016/j.bcp.2018.07.009
4 张 宏. PET分子影像: 神经核医学发展的机遇与挑战[J]. 中华核医学与分子影像杂志, 2017, 37(9): 525-526
ZHANG Hong. PET molecular imaging: the opportunity and challenge for the development of neuro-nuclear medicine[J].Chinese Journal of Nuclear Medicine and Molecular Imaging, 2017, 37(9): 525-526. (in Chinese)
5 沈 灵, 华 甜, 刘志杰. 人源大麻素受体的结构生物学研究[J]. 自然杂志, 2021, 43(1): 25-31
SHEN Ling, HUA Tian, LIU Zhijie. Structural studies of human cannabinoid receptors[J]. Chinese Journal of Nature, 2021, 43(1): 25-31. (in Chinese)
6 HUAT, VEMURIK, PUM, et al.Crystal structure of the human cannabinoid receptor CB1[J]Cell, 2016, 167( 3): 750-762.e14.
doi: 10.1016/j.cell.2016.10.004
7 SHAOZ, YINJ, CHAPMANK, et al.High-resolution crystal structure of the human CB1 cannabinoid receptor[J]Nature, 2016, 540( 7634): 602-606.
doi: 10.1038/nature20613
8 HUAT, VEMURIK, NIKASS P, et al.Crystal structures of agonist-bound human cannabinoid receptor CB1[J]Nature, 2017, 547( 7664): 468-471.
doi: 10.1038/nature23272
9 HU S S, MACKIE K. Distribution of the endocannabinoid system in the central nervous system[J]. Handb Exp Pharmacol, 2015, 231: 59-93
10 华 甜. 人源大麻素受体亚型Ⅰ的结构和功能研究[D]. 北京: 中国科学院大学, 2017
HUA Tian. Structural and functional studies on the human cannabinoid receptor[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
11 安永超, 任 维, 杨唐斌. 大麻素Ⅰ型受体生理调节作用研究进展[J]. 中国公共卫生, 2011, 27(7): 859-861
AN Yongchao, REN Wei, YANG Tangbin, Research progress on the physiological regulation of cannabinoid type Ⅰ receptors[J]. Chinese Journal of Public Health, 2011, 27(7): 859-861. (in Chinese)
12 PIAZZAP V, COTAD, MARSICANOG. The CB1 receptor as the cornerstone of exostasis[J]Neuron, 2017, 93( 6): 1252-1274.
doi: 10.1016/j.neuron.2017.02.002
13 BASAVARAJAPPAB S, SHIVAKUMARM, JOSHIV, et al.Endocannabinoid system in neurodegenerative disorders[J]J Neurochem, 2017, 142( 5): 624-648.
doi: 10.1111/jnc.14098
14 FRAGUAS-SáNCHEZA I, TORRES-SUáREZA I. Medical use of cannabinoids[J]Drugs, 2018, 78( 16): 1665-1703.
doi: 10.1007/s40265-018-0996-1
15 UDDINM S, MAMUNA A, SUMSUZZMAND M, et al.Emerging promise of cannabinoids for the management of pain and associated neuropathological alterations in alzheimer’s disease[J]Front Pharmacol, 2020, 1097.
doi: 10.3389/fphar.2020.01097
16 ORSOLINIL, CHIAPPINIS, VOLPEU, et al.Use of medicinal cannabis and synthetic cannabinoids in post-traumatic stress disorder (ptsd): a systematic review[J]Medicina, 2019, 55( 9): 525.
doi: 10.3390/medicina55090525
17 MATHEWSW B, SCHEFFELU, FINLEYP, et al.Biodistribution of [18F] SR144385 and [18F] SR147963: selective radioligands for positron emission tomographic studies of brain cannabinoid receptors[J]Nucl Med Biol, 2000, 27( 8): 757-762.
doi: 10.1016/s0969-8051(00)00152-9
18 LAHDENPOHJAS, RAJALAN A, HELINJ S, et al.Ruthenium-mediated 18F-fluorination and preclinical evaluation of a new CB1 receptor imaging agent [18F]FPATPP[J]ACS Chem Neurosci, 2020, 11( 13): 2009-2018.
doi: 10.1021/acschemneuro.0c00313
19 WONGD F, KUWABARAH, HORTIA G, et al.Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR[J]Neuroimage, 2010, 52( 4): 1505-1513.
doi: 10.1016/j.neuroimage.2010.04.034
20 TSUJIKAWAT, ZOGHBIS S, HONGJ, et al.In vitro and in vivo evaluation of 11C-SD5024, a novel PET radioligand for human brain imaging of cannabinoid CB1 receptors[J]Neuroimage, 2014, 733-741.
doi: 10.1016/j.neuroimage.2013.09.043
21 HORTI A G, FAN H, KUWABARA H et al. 11C-JHU75528: a radiotracer for PET imaging of CB1 cannabinoid receptors[J]. J Nucl Med, 2006, 47: 1689-1696
22 RANGANATHANM, CORTES-BRIONESJ, RADHAKRISHNANR, et al.Reduced brain cannabinoid receptor availability in schizophrenia[J]Biol Psychiatry, 2016, 79( 12): 997-1005.
doi: 10.1016/j.biopsych.2015.08.021
23 NEUMEISTERA, NORMANDINM D, PIETRZAKR H, et al.Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study[J]Mol Psychiatry, 2013, 18( 9): 1034-1040.
doi: 10.1038/mp.2013.61
24 D’SOUZAD C, CORTES-BRIONESJ A, RANGANATHANM, et al.Rapid changes in cannabinoid 1 receptor availability in cannabis-dependent male subjects after abstinence from cannabis[J]Biol Psychiatry Cogn Neurosci Neuroimaging, 2016, 1( 1): 60-67.
doi: 10.1016/j.bpsc.2015.09.008
25 CASTEELSC, KOOLEM, CELENS, et al.Preclinical evaluation and quantification of [18F]MK-9470 as a radioligand for PET imaging of the type 1 cannabinoid receptor in rat brain[J]Eur J Nucl Med Mol Imaging, 2012, 39( 9): 1467-1477.
doi: 10.1007/s00259-012-2163-3
26 AHMADR, GOFFINK, VAN DEN STOCKJ, et al.In vivo type 1 cannabinoid receptor availability in Alzheimer’s disease[J]Eur Neuropsychopharmacol, 2014, 24( 2): 242-250.
doi: 10.1016/j.euroneuro.2013.10.002
27 CECCARINIJ, CASTEELSC, AHMADR, et al.Regional changes in the type 1 cannabinoid receptor are associated with cognitive dysfunction in Parkinson’s disease[J]Eur J Nucl Med Mol Imaging, 2019, 46( 11): 2348-2357.
doi: 10.1007/s00259-019-04445-x
28 CASTEELSC, VANDEPUTTEC, RANGARAJANJ R, et al.Metabolic and type 1 cannabinoid receptor imaging of a transgenic rat model in the early phase of Huntington disease[J]Exp Neurol, 2011, 229( 2): 440-449.
doi: 10.1016/j.expneurol.2011.03.014
29 OOMSM, RIETJENSR, RANGARAJANJ R, et al.Early decrease of type 1 cannabinoid receptor binding and phosphodiesterase 10A activity in vivo in R6/2 Huntington mice[J]Neurobiol Aging, 2014, 35( 12): 2858-2869.
doi: 10.1016/j.neurobiolaging.2014.06.010
30 CECCARINIJ, DE HERTM, VAN WINKELR, et al.Increased ventral striatal CB1 receptor binding is related to negative symptoms in drug-free patients with schizophrenia[J]Neuroimage, 2013, 304-312.
doi: 10.1016/j.neuroimage.2013.04.052
31 CECCARINIJ, KUEPPERR, KEMELSD, et al.[18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users[J]Addict Biol, 2015, 20( 2): 357-367.
doi: 10.1111/adb.12116
32 TERRYG E, HIRVONENJ, LIOWJ S, et al.Imaging and quantitation of cannabinoid CB1 receptors in human and monkey brains using 18F-labeled inverse agonist radioligands[J]J Nucl Med, 2010, 51( 1): 112-120.
doi: 10.2967/jnumed.109.067074
33 TAKKINENJ S, LóPEZ-PICóNF R, KIRJAVAINENA K, et al.[18F]FMPEP-d2 PET imaging shows age- and genotype-dependent impairments in the availability of cannabinoid receptor 1 in a mouse model of Alzheimer’s disease[J]Neurobiol Aging, 2018, 199-208.
doi: 10.1016/j.neurobiolaging.2018.05.013
34 BORGANF, LAURIKAINENH, VERONESEM, et al.In vivo availability of cannabinoid 1 receptor levels in patients with first-episode psychosis[J]JAMA Psychiatry, 2019, 76( 10): 1074-1084.
doi: 10.1001/jamapsychiatry.2019.1427
35 HIRVONENJ, GOODWINR S, LIC T, et al.Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers[J]Mol Psychiatry, 2012, 17( 6): 642-649.
doi: 10.1038/mp.2011.82
36 TERRYG E, LIOWJ S, ZOGHBIS S, et al.Quantitation of cannabinoid CB1 receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand[J]Neuroimage, 2009, 48( 2): 362-370.
doi: 10.1016/j.neuroimage.2009.06.059
37 HODSONR. Alzheimer’s disease[J]Nature, 2018, 559( 7715): S1.
doi: 10.1038/d41586-018-05717-6
38 POEWEW, SEPPIK, TANNERC M, et al.Parkinson disease[J]Nat Rev Dis Primers, 2017, 3( 1): 17013.
doi: 10.1038/nrdp.2017.13
39 CASTEELSC, LAUWERSE, BAITARA, et al.In vivo type 1 cannabinoid receptor mapping in the 6-hydroxydopamine lesion rat model of Parkinson’s disease[J]Brain Res, 2010, 153-162.
doi: 10.1016/j.brainres.2009.12.026
40 VAN LAEREK, CASTEELSC, LUNSKENSS, et al.Regional changes in type 1 cannabinoid receptor availability in Parkinson’s disease in vivo[J]Neurobiol Aging, 2012, 33( 3): 620.e1-620.e8.
doi: 10.1016/j.neurobiolaging.2011.02.009
41 CARONN S, DORSEYE R, HAYDENM R. Therapeutic approaches to Huntington disease: from the bench to the clinic[J]Nat Rev Drug Discov, 2018, 17( 10): 729-750.
doi: 10.1038/nrd.2018.133
42 DOWIEM J, BRADSHAWH B, HOWARDM L, et al.Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington’s disease[J]Neuroscience, 2009, 163( 1): 456-465.
doi: 10.1016/j.neuroscience.2009.06.014
43 VAN LAEREK, CASTEELSC, DHOLLANDERI, et al.Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo[J]J Nucl Med, 2010, 51( 9): 1413-1417.
doi: 10.2967/jnumed.110.077156
44 CECCARINIJ, AHMADR, VAN DE VLIETL, et al.Behavioral symptoms in premanifest huntington disease correlate with reduced frontal CB1 R levels[J]J Nucl Med, 2019, 60( 1): 115-121.
doi: 10.2967/jnumed.118.210393
45 MARDERS R, CANNONT D. Schizophrenia[J]N Engl J Med, 2019, 381( 18): 1753-1761.
doi: 10.1056/NEJMra1808803
46 SHERIFM, RADHAKRISHNANR, D’SOUZAD C, et al.Human laboratory studies on cannabinoids and psychosis[J]Biol Psychiatry, 2016, 79( 7): 526-538.
doi: 10.1016/j.biopsych.2016.01.011
47 BORGANF, O’DALYO, VERONESEM, et al.The neural and molecular basis of working memory function in psychosis: a multimodal PET-fMRI study[J]Mol Psychiatry, 2019,
doi: 10.1038/s41380-019-0619-6
48 COHENK, WEIZMANA, WEINSTEINA. Modulatory effects of cannabinoids on brain neurotransmission[J]Eur J Neurosci, 2019, 50( 3): 2322-2345.
doi: 10.1111/ejn.14407
[1] 宣自学,张轶雯,潘宗富,郑小卫,黄萍. 天然药物成分干预铁死亡抑制肿瘤的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 601-606.
[2] 曲文政,庄英粮,李学坤. 表观遗传修饰在神经退行性变性疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 642-650.
[3] 孙琦,曹蔚,罗建红. GluN3亚基的N-甲基-D-天冬氨酸受体及其在中枢神经系统的功能[J]. 浙江大学学报(医学版), 2021, 50(5): 651-658.
[4] 史建蓉,马望前,汤慧芳. 磷酸二酯酶抑制剂治疗炎性肠病的研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 659-665.
[5] 唐玥,孔元原. 遗传性酪氨酸血症Ⅰ型及其筛查和诊治进展[J]. 浙江大学学报(医学版), 2021, 50(4): 514-523.
[6] 刘飞,冯春月,毛建华,傅海东. 2019冠状病毒病疫苗接种相关新发及复发肾小球病研究进展[J]. 浙江大学学报(医学版), 2021, 50(4): 524-528.
[7] 韩连书. 新生儿遗传病基因筛查技术及相关疾病[J]. 浙江大学学报(医学版), 2021, 50(4): 429-435.
[8] 胡茫莎,韦树丽,周武源,王苹莉. 新生儿Fc受体基础研究和临床应用进展[J]. 浙江大学学报(医学版), 2021, 50(4): 537-544.
[9] 胡靖依,王青青,刘杨. 蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 396-402.
[10] 葛瀛洲,刘欣梅,黄荷凤. 沉默信息调节因子家族参与病理妊娠的研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 335-344.
[11] 王锦涛,黄蕾,魏丽丽,陈炜. 重复经颅磁刺激治疗阿尔茨海默病患者的疗效影响因素[J]. 浙江大学学报(医学版), 2021, 50(3): 383-389.
[12] 庄文雯,杨咏琪,李洪亮,梁景岩. 动脉粥样硬化过程中核因子E2相关因子2对血管平滑肌细胞的调控作用[J]. 浙江大学学报(医学版), 2021, 50(3): 390-395.
[13] 朱锋,项迎春,曾玲晖. 线粒体沉默信息调节因子家族在癫痫发生发展中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 403-408.
[14] 旷文静,罗小波,王冏珂,曾昕. 梅–罗综合征患者的表征及其诊治[J]. 浙江大学学报(医学版), 2021, 50(2): 148-154.
[15] 王晨宇,王英男,汪存艺,施洁珺,王慧明. 组织工程修复颞下颌关节的关键因素研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 212-221.