Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (1): 1-16    DOI: 10.3724/zdxbyxb-2021-0053
专题报道     
表观遗传与肿瘤代谢研究进展
韩恒毅(),冯帆,李海涛()
清华大学医学院,北京 100084
Research advances on epigenetics and cancer metabolism
HAN Hengyi(),FENG Fan,LI Haitao()
School of Medicine,Tsinghua University,Beijing 100084,China
 全文: PDF(2506 KB)   HTML( 65 )
摘要:

表观遗传学主要关注DNA甲基化、组蛋白修饰、染色质重塑,以及非编码RNA等超越DNA序列的基因调控机制。表观遗传机制参与了个体发育、细胞命运决定和肿瘤发生等众多生物学过程。其中表观遗传信息以各种染色质修饰和高级结构的形式存储于基因组中,它的建立和维持与细胞代谢紧密相关。肿瘤细胞中存在的代谢改变包括有氧糖酵解、葡萄糖摄取量增加、谷氨酰胺代谢异常活跃、利用非主要供能物质供能等,这些改变满足了肿瘤发生发展过程中旺盛的能量和物质需求,帮助细胞适应缺氧的肿瘤微环境,进而为肿瘤增殖、侵袭、迁移等生物活动提供支持。肿瘤细胞的表观遗传修饰与代谢之间存在复杂的相互关系,一方面肿瘤细胞中的代谢产物作为表观修饰酶的辅因子、修饰供体或拮抗分子影响表观修饰景观;另一方面表观遗传修饰可以直接改变代谢酶和转运蛋白的表达或通过影响信号转导和转录因子的表达调控细胞代谢。本文综述了不同表观遗传学过程与肿瘤细胞代谢之间的相互作用,并展望两者在肿瘤治疗中的潜在应用前景。

关键词: 表观遗传学代谢肿瘤DNA甲基化组蛋白修饰非编码RNA表观景观综述    
Abstract:

Epigenetics concerns gene regulatory mechanisms beyond DNA sequence,such as DNA methylation,histone modification,chromatin remodeling,and non-coding RNA. Epigenetic mechanisms play a key role in development,cell fate decision and tumorigenesis. Chromatin modifications and its high order structure across our genome are major forms of epigenetic information,and its establishment and maintenance are closely related to cell metabolism. Metabolic changes in cancer cells include aerobic glycolysis,increased glucose uptake,abnormally active glutamine metabolism,and the use of non-conventional energy supply. These changes meet the vigorous energy and matter needs for the development and spread of cancer,and help tumor cells adapt to hypoxia microenvironment for their survival,proliferation,invasion and migration. There is a complex relationship between epigenetic modifications and cell metabolism in tumor. On the one hand,metabolites in tumor cells may act as cofactors,modification donors or antagonists of epigenetic enzymes,thus modulating the epigenetic landscape. On the other hand,epigenetic modifications can directly regulate the expression of metabolic enzymes,transporters,signaling pathway and transcription factors to affect cell metabolism. This article reviews the crosstalk between epigenetics and cancer metabolism,to explore their potential future applications in the treatment of tumors.

Key words: Epigenetics    Metabolism    Tumor    DNA methylation    Histone modification    Non-coding RNA    Epigenetic landscape    Review
收稿日期: 2021-01-12 出版日期: 2021-05-14
CLC:  R730.23  
基金资助: 国家重点研发计划(2020YFA0803300)
通讯作者: 李海涛     E-mail: hanhy17@mails.tsinghua.edu.cn;lht@tsinghua.edu.cn
作者简介: 韩恒毅,博士研究生,主要从事表观遗传和肿瘤生物学研究;E-mail:hanhy17@mails.tsinghua.edu.cn;https://orcid.org/0000-0003-4840-4293.冯 帆,博士后,主要从事表观遗传调控的分子机制研究;E-mail:fengfan8@mails. tsinghua.edu.cn; https://orcid.org/0000-0001-8345-2894
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩恒毅
冯帆
李海涛

引用本文:

韩恒毅,冯帆,李海涛. 表观遗传与肿瘤代谢研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 1-16.

HAN Hengyi,FENG Fan,LI Haitao. Research advances on epigenetics and cancer metabolism. J Zhejiang Univ (Med Sci), 2021, 50(1): 1-16.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0053        http://www.zjujournals.com/med/CN/Y2021/V50/I1/1

1 WARBURG O, WIND F, NEGELEIN E . The metabo-lismof tumors in the body[J]. J General Physiol, 1927, 8(6): 519-530.
doi: 10.1085/jgp.8.6.519
2 DEBERARDINIS R J, MANCUSO A, DAIKHIN E, et al. Beyond aerobic glycolysis:transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis[J]. Proc Natl Acad Sci USA, 2007, 104(49): 19345-19350.
doi: 10.1073/pnas.0709747104
3 HSU P P, SABATINI D M . Cancer cell metabolism:warburg and beyond[J]. Cell, 2008, 134(5): 703-707.
doi: 10.1016/j.cell.2008.08.021
4 JAENISCH R, BIRD A . Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J]. Nat Genet, 2003, 33(S3): 245-254.
doi: 10.1038/ng1089
5 HERCEG Z, VAISSIèRE T . Epigenetic mechanisms and cancer:an interface between the environment and the genome[J]. Epigenetics, 2011, 6(7): 804-819.
doi: 10.4161/epi.6.7.16262
6 EDEN A, GAUDET F, WAGHMARE A, et al. Chromosomal instability and tumors promoted by DNA hypomethylation[J]. Science, 2003, 300(5618): 455.
doi: 10.1126/science.1083557
7 FRAGA M F, BALLESTAR E, VILLAR-GAREA A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer[J]. Nat Genet, 2005, 37(4): 391-400.
doi: 10.1038/ng1531
8 MENTCH S J, MEHRMOHAMADI M, HUANG L, et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism[J]. Cell Metab, 2015, 22(5): 861-873.
doi: 10.1016/j.cmet.2015.08.024
9 LEE J V, CARRER A, SHAH S, et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation[J]. Cell Metab, 2014, 20(2): 306-319.
doi: 10.1016/j.cmet.2014.06.004
10 LI X, KAZGAN N . Mammalian sirtuins and energy metabolism[J]. Int J Biol Sci, 2011, 7(5): 575-587.
doi: 10.7150/ijbs.7.575
11 BIRD A P . CPG-rich islands and the function of dna methylation[J]. Nature, 1986, 321(6067): 209-213.
doi: 10.1038/321209a0
12 YEIVIN A,RAZIN A. Gene methylation patterns and expression[J]. Exs,1993,64:523–568.DOI:10. 1007/978-3-0348-9118-9_24 .
13 ROBERTSON K D, UZVOLGYI E, LIANG G, et al. The human DNA methyltransferases (DNMTs) 1,3a and 3b:coordinate mRNA expression in normal tissues and overexpression in tumors[J]. Nucleic Acids Res, 1999, 27(11): 2291-2298.
doi: 10.1093/nar/27.11.2291
14 HAASE C, BERGMANN R, FUECHTNER F, et al. L-type amino acid transporters LAT1 and LAT4 in cancer:uptake of 3-O-Methyl-6-18F-Fluoro-L-Dopa in human adenocarcinoma and squamous cell carcinoma in vitro and in vivo[J] . J Nucl Med, 2007, 48(12): 2063-2071.
doi: 10.2967/jnumed.107.043620
15 MARTíNEZ-CHANTAR M L, VáZQUEZ-CHANTADA M, ARIZ U, et al. Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice[J]. Hepatology, 2007, 47(4): 1191-1199.
doi: 10.1002/hep.22159
16 GUO J U, SU Y, ZHONG C, et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain[J]. Cell, 2011, 145(3): 423-434.
doi: 10.1016/j.cell.2011.03.022
17 KOHLI R M, ZHANG Y . TET enzymes,TDG and the dynamics of DNA demethylation[J]. Nature, 2013, 502(7472): 472-479.
doi: 10.1038/nature12750
18 GAMBICHLER T, SAND M, SKRYGAN M . Loss of 5-hydroxymethylcytosine and ten-eleven translocation 2 protein expression in malignant melanoma[J]. Melanoma Res, 2013, 23(3): 218-220.
doi: 10.1097/CMR.0b013e32835f9bd4
19 KUDO Y, TATEISHI K, YAMAMOTO K, et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation[J]. Cancer Sci, 2012, 103(4): 670-676.
doi: 10.1111/j.1349-7006.2012.02213.x
20 XIAO M, YANG H, XU W, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors[J]. Genes Dev, 2012, 26(12): 1326-1338.
doi: 10.1101/gad.191056.112
21 IKEGAMI K, OHGANE J, TANAKA S, et al. Interplay between DNA methylation,histone modification and chromatin remodeling in stem cells and during development[J]. Int J Dev Biol, 2009, 53(2-3): 203-214.
doi: 10.1387/ijdb.082741ki
22 DESAI S, DING M, WANG B, et al. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers[J]. Oncotarget, 2014, 5(18): 8202-8210.
doi: 10.18632/oncotarget.1159
23 NING X, QI H, LI R, et al. Synthesis and antitumor activity of novel 2,3-didithiocarbamate substituted naphthoquinones as inhibitors of pyruvate kinase M2 isoform[J]. J Enzyme Inhib Med Chem, 2018, 33(1): 126-129.
doi: 10.1080/14756366.2017.1404591
24 KANEKO Y,SHIBUYA M,NAKAYAMA T,et al. Hypomethylation of C-MYC and epidermal growth-factor receptor genes in human hepatocellular-carcinoma and fetal liver[J]. Jap J Cancer Res,1985,76(12):1136–1140 .
25 HANADA M,DELIA D,AIELLO A,et al. BCL-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic-leukemia[J]. Blood,1993,82(6):1820–1828 .
26 POGELL B M,MCGILVERY R W. Partial purification of fructose-1,6-diphosphatase[J]. J Biol Chem,1954,208(1):149–157 .
27 DONG C, YUAN T, WU Y, et al. Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer[J]. Cancer Cell, 2013, 23(3): 316-331.
doi: 10.1016/j.ccr.2013.01.022
28 ZHANG J, WANG J, XING H, et al. Down-regulation of FBP1 by ZEB1-mediated repression confers to growth and invasion in lung cancer cells[J]. Mol Cell Biochem, 2016, 411(1-2): 331-340.
doi: 10.1007/s11010-015-2595-8
29 BáRCENA-VARELA M, CARUSO S, LLERENA S, et al. Dual targeting of histone methyltransferase G9a and DNA‐methyltransferase 1 for the treatment of experimental hepatocellular carcinoma[J]. Hepatology, 2019, 69(2): 587-603.
doi: 10.1002/hep.30168
30 LOPEZ-SERRA P,MARCILLA M,VILLANUEVA A,et al. A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect [J]. Nat Commun,2014,5:3608.DOI:10.1038/ncomms4608 .
31 DüVEL K, YECIES J L, MENON S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J]. Mol Cell, 2010, 39(2): 171-183.
doi: 10.1016/j.molcel.2010.06.022
32 SEMENZA G L . Regulation of cancer cell metabolism by hypoxia-inducible factor 1[J]. Semin Cancer Biol, 2009, 19(1): 12-16.
doi: 10.1016/j.semcancer.2008.11.009
33 KANG Y H, LEE H S, KIM W H . Promoter methylation and silencing of PTEN in gastric carcinoma[J]. Lab Invest, 2002, 82(3): 285-291.
doi: 10.1038/labinvest.3780422
34 VANHARANTA S, SHU W, BRENET F, et al. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer[J]. Nat Med, 2013, 19(1): 50-56.
doi: 10.1038/nm.3029
35 RAWLUSZKO A A, BUJNICKA K E, HORBACKA K, et al. Expression and DNA methylation levels of prolyl hydroxylases PHD1,PHD2,PHD3 and asparaginyl hydroxylase FIH in colorectal cancer[J]. BMC Cancer, 2013, 13(1): 526.
doi: 10.1186/1471-2407-13-526
36 TROJAN J, BRIEGER A, RAEDLE J, et al. 5’-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer[J]. Gut, 2000, 47(2): 272-276.
doi: 10.1136/gut.47.2.272
37 XU Y, LIU C, CHEN S, et al. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease[J] . Cell Signal, 2014, 26(8): 1680-1689.
doi: 10.1016/j.cellsig.2014.04.009
38 LI H,WANG J,XU H,et al. Decreased fructose-1,6-bisphosphatase-2 expression promotes glycolysis and growth in gastric cancer cells [J]. Mol Cancer,2013,12(1):110.DOI:10.1186/1476-4598-12-110 .
39 KOUZARIDES T . Chromatin modifications and their function[J]. Cell, 2007, 128(4): 693-705.
doi: 10.1016/j.cell.2007.02.005
40 STRAHL B D, ALLIS C D . The language of covalent histone modifications[J]. Nature, 2000, 403(6765): 41-45.
doi: 10.1038/47412
41 JENUWEIN T, ALLIS C D . Translating the histone code[J]. Science, 2001, 293(5532): 1074-1080.
doi: 10.1126/science.1063127
42 ZHANG Y, REINBERG D . Transcription regulation by histone methylation:interplay between different covalent modifications of the core histone tails[J]. Genes Dev, 2001, 15(18): 2343-2360.
doi: 10.1101/gad.927301
43 MARTIN C, ZHANG Y . The diverse functions of histone lysine methylation[J]. Nat Rev Mol Cell Biol, 2005, 6(11): 838-849.
doi: 10.1038/nrm1761
44 SHILATIFARD A . Chromatin modifications by methylation and ubiquitination:implications in the regulation of gene expression[J]. Annu Rev Biochem, 2006, 75(1): 243-269.
doi: 10.1146/annurev.biochem.75.103004.142422
45 DORRANCE A M, LIU S, YUAN W, et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations[J] . J Clin Invest, 2006, 116(10): 2707-2716.
doi: 10.1172/jci25546
46 SIMON J A, LANGE C A . Roles of the EZH2 histone methyltransferase in cancer epigenetics[J]. Mutat Res/Fundamental Mol Mech Mutagenesis, 2008, 647(1-2): 21-29.
doi: 10.1016/j.mrfmmm.2008.07.010
47 MCCABE M T, OTT H M, GANJI G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations[J]. Nature, 2012, 492(7427): 108-112.
doi: 10.1038/nature11606
48 VARAMBALLY S, DHANASEKARAN S M, ZHOU M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer[J]. Nature, 2002, 419(6907): 624-629.
doi: 10.1038/nature01075
49 HU H, QIAN K, HO M C, et al. Small molecule inhibitors of protein arginine methyltransferases[J]. Expert Opin Investig Drugs, 2016, 25(3): 335-358.
doi: 10.1517/13543784.2016.1144747
50 MATHIOUDAKI K, SCORILAS A, ARDAVANIS A, et al. Clinical evaluation of PRMT1 gene expression in breast cancer[J]. Tumor Biol, 2011, 32(3): 575-582.
doi: 10.1007/s13277-010-0153-2
51 CHEUNG N, FUNG T K, ZEISIG B B, et al. Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia[J]. Cancer Cell, 2016, 29(1): 32-48.
doi: 10.1016/j.ccell.2015.12.007
52 KOOISTRA S M, HELIN K . Molecular mechanisms and potential functions of histone demethylases[J]. Nat Rev Mol Cell Biol, 2012, 13(5): 297-311.
doi: 10.1038/nrm3327
53 FENG Z, YAO Y, ZHOU C, et al. Pharmacological inhibition of LSD1 for the treatment of MLL-rearranged leukemia[J]. J Hematol Oncol, 2016, 9(1): 24.
doi: 10.1186/s13045-016-0252-7
54 VERDIN E, OTT M . 50 years of protein acetylation:from gene regulation to epigenetics,metabolism and beyond[J]. Nat Rev Mol Cell Biol, 2015, 16(4): 258-264.
doi: 10.1038/nrm3931
55 KOUZARIDES T . Histone acetylases and deacetylases in cell proliferation[J]. Curr Opin Genets Dev, 1999, 9(1): 40-48.
doi: 10.1016/s0959-437x(99)80006-9
56 WELLEN K E, HATZIVASSILIOU G, SACHDEVA U M, et al. ATP-citrate lyase links cellular metabolism to histone acetylation[J]. Science, 2009, 324(5930): 1076-1080.
doi: 10.1126/science.1164097
57 KNOEPFLER P S, ZHANG X, CHENG P F, et al. Myc influences global chromatin structure[J]. EMBO J, 2006, 25(12): 2723-2734.
doi: 10.1038/sj.emboj.7601152
58 RICHTERS A, KOEHLER A N . Epigenetic modula- tion using small molecules - targeting histone acetyltransferases in disease[J]. Curr Med Chem, 2017, 24(37): 4121-4150.
doi: 10.2174/0929867324666170223153115
59 SPANGE S, WAGNER T, HEINZEL T, et al. Acetylation of non-histone proteins modulates cellular signalling at multiple levels[J]. Int J Biochem Cell Biol, 2009, 41(1): 185-198.
doi: 10.1016/j.biocel.2008.08.027
60 SEGRé C V, CHIOCCA S . Regulating the regulators:the post-translational code of class I HDAC1 and HDAC2[J]. J Biomed Biotech, 2011, 690848.
doi: 10.1155/2011/690848
61 ZHANG Z G, QIN C Y . Sirt6 suppresses hepatocellular carcinoma cell growth via inhibiting the extracellular signal-regulated kinase signaling pathway[J]. Mol Med Rep, 2014, 9(3): 882-888.
doi: 10.3892/mmr.2013.1879
62 BARBER M F, MICHISHITA-KIOI E, XI Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation[J]. Nature, 2012, 487(7405): 114-118.
doi: 10.1038/nature11043
63 LIU P Y, XU N, MALYUKOVA A, et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins[J]. Cell Death Differ, 2013, 20(3): 503-514.
doi: 10.1038/cdd.2012.147
64 CHEN Y, SPRUNG R, TANG Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones[J]. Mol Cellular Proteomics, 2007, 6(5): 812-819.
doi: 10.1074/mcp.M700021-MCP200
65 TAN M, LUO H, LEE S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification[J]. Cell, 2011, 146(6): 1016-1028.
doi: 10.1016/j.cell.2011.08.008
66 XIE Z, DAI J, DAI L, et al. Lysine succinylation and lysine malonylation in histones[J]. Mol Cellular Proteomics, 2012, 11(5): 100-107.
doi: 10.1074/mcp.M111.015875
67 XIE Z, ZHANG D, CHUNG D, et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation[J]. Mol Cell, 2016, 62(2): 194-206.
doi: 10.1016/j.molcel.2016.03.036
68 LEE K K, WORKMAN J L . Histone acetyltransferase complexes:one size doesn’t fit all[J]. Nat Rev Mol Cell Biol, 2007, 8(4): 284-295.
doi: 10.1038/nrm2145
69 ROTH S Y, DENU J M, ALLIS C D . Histone acetyltransferases[J]. Annu Rev Biochem, 2001, 70(1): 81-120.
doi: 10.1146/annurev.biochem.70.1.81
70 CHENG Z, TANG Y, CHEN Y, et al. Molecular characterization of propionyllysines in non-histone proteins[J]. Mol Cell Proteomics, 2009, 8(1): 45-52.
doi: 10.1074/mcp.M800224-MCP200
71 KACZMARSKA Z, ORTEGA E, GOUDARZI A, et al. Structure of p300 in complex with acyl-CoA variants[J]. Nat Chem Biol, 2017, 13(1): 21-29.
doi: 10.1038/nchembio.2217
72 SABARI B R, TANG Z, HUANG H, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation[J]. Mol Cell, 2015, 58(2): 203-215.
doi: 10.1016/j.molcel.2015.02.029
73 BERNDSEN C E, ALBAUGH B N, TAN S, et al. Catalytic mechanism of a MYST family histone acetyltransferase[J]. Biochemistry, 2007, 46(3): 623-629.
doi: 10.1021/bi602513x
74 LEEMHUIS H, PACKMAN L C, NIGHTINGALE K P, et al. The human histone acetyltransferase P/CAF is a promiscuous histone propionyltransferase[J]. Chembiochem, 2008, 9(4): 499-503.
doi: 10.1002/cbic.200700556
75 RINGEL A E, WOLBERGER C . Structural basis for acyl-group discrimination by human Gcn5L2[J]. Acta Crystlogr D Struct Biol, 2016, 72(7): 841-848.
doi: 10.1107/s2059798316007907
76 PENG C, LU Z, XIE Z, et al. The first identification oflysine malonylation substrates and its regulatory enzyme[J]. Mol Cell Proteomics, 2011, 10(12): M111.012658.
doi: 10.1074/mcp.M111.012658
77 JIANG G, NGUYEN D, ARCHIN N M, et al. HIV latency is reversed by ACSS2-driven histone crotonylation[J]. J Clin Invest, 2018, 128(3): 1190-1198.
doi: 10.1172/jci98071
78 MASHIMO T, PICHUMANI K, VEMIREDDY V, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases[J]. Cell, 2014, 159(7): 1603-1614.
doi: 10.1016/j.cell.2014.11.025
79 COMERFORD S A, HUANG Z, DU X, et al. Acetate dependence of tumors[J]. Cell, 2014, 159(7): 1591-1602.
doi: 10.1016/j.cell.2014.11.020
80 HALLOWS W C, LEE S, DENU J M . Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases[J]. Proc Natl Acad Sci USA, 2006, 103(27): 10230-10235.
doi: 10.1073/pnas.0604392103
81 FELDMAN J L, BAEZA J, DENU J M . Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins[J]. J Biol Chem, 2013, 288(43): 31350-31356.
doi: 10.1074/jbc.C113.511261
82 TAN M, PENG C, ANDERSON K A, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5[J]. Cell Metab, 2014, 19(4): 605-617.
doi: 10.1016/j.cmet.2014.03.014
83 PARK J, CHEN Y, TISHKOFF D X, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways[J]. Mol Cell, 2013, 50(6): 919-930.
doi: 10.1016/j.molcel.2013.06.001
84 DU J, ZHOU Y, SU X, et al. Sirt5 is a NAD-dependentprotein lysine demalonylase and desuccinylase[J]. Science, 2011, 334(6057): 806-809.
doi: 10.1126/science.1207861
85 ALAMOUDI A A, ALNOURY A, GAD H . miRNA in tumour metabolism and why could it be the preferred pathway for energy reprograming[J]. Brief Funct Genomics, 2018, 17(3): 157-169.
doi: 10.1093/bfgp/elx023
86 COHEN A L, HOLMEN S L, COLMAN H . IDH1 and IDH2 mutations in gliomas[J]. Curr Neurol NeuroSci Rep, 2013, 13(5): 345.
doi: 10.1007/s11910-013-0345-4
87 FIGLIA G, WILLNOW P, TELEMAN A A . Metabo- lites regulate cell signaling and growth via covalent modification of proteins[J]. Dev Cell, 2020, 54(2): 156-170.
doi: 10.1016/j.devcel.2020.06.036
88 HAN X, XIANG X, YANG H, et al. p300-catalyzed lysine crotonylation promotes the proliferation,invasion,and migration of HeLa cells via heterogeneous nuclear ribonucleoprotein A1[J]. Anal Cellular Pathol, 2020, 1-6.
doi: 10.1155/2020/5632342
89 HUANG H, WANG D L, ZHAO Y . Quantitative crotonylome analysis expands the roles of p300 in the regulation of lysine crotonylation pathway[J]. Proteomics, 2018, 18(15): 1700230.
doi: 10.1002/pmic.201700230
90 LIU J, YUE Y, HAN D, et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N 6-adenosine methylation[J] . Nat Chem Biol, 2014, 10(2): 93-95.
doi: 10.1038/nchembio.1432
91 PING X L, SUN B F, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N 6-methyladenosine methyltransferase[J] . Cell Res, 2014, 24(2): 177-189.
doi: 10.1038/cr.2014.3
92 JIA G, FU Y, ZHAO X, et al. N 6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J] . Nat Chem Biol, 2011, 7(12): 885-887.
doi: 10.1038/nchembio.687
93 ZHENG G, DAHL J A, NIU Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29.
doi: 10.1016/j.molcel.2012.10.015
94 DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206.
doi: 10.1038/nature11112
95 WANG X, LU Z, GOMEZ A, et al. N 6-methyladeno- sine-dependent regulation of messenger RNA stability[J] . Nature, 2014, 505(7481): 117-120.
doi: 10.1038/nature12730
96 WANG X, ZHAO B S, ROUNDTREE I A, et al. N 6-methyladenosine modulates messenger RNA translation efficiency[J] . Cell, 2015, 161(6): 1388-1399.
doi: 10.1016/j.cell.2015.05.014
97 XIAO W, ADHIKARI S, DAHAL U, et al. Nuclear m 6 a reader YTHDC1 regulates mRNA splicing[J] . Mol Cell, 2016, 61(4): 507-519.
doi: 10.1016/j.molcel.2016.01.012
98 LI Z, WENG H, SU R, et al. FTO plays an oncogenicrole in acute myeloid leukemia as a N 6-methyladenosine RNA demethylase[J] . Cancer Cell, 2017, 31(1): 127-141.
doi: 10.1016/j.ccell.2016.11.017
99 ZHANG S, ZHAO B S, ZHOU A, et al. M 6 a demethylase alkbh5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program[J] . Cancer Cell, 2017, 31(4): 591-606.e6.
doi: 10.1016/j.ccell.2017.02.013
100 TANABE A, TANIKAWA K, TSUNETOMI M, et al. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated[J]. Cancer Lett, 2016, 376(1): 34-42.
doi: 10.1016/j.canlet.2016.02.022
101 SU R, DONG L, LI C, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling[J]. Cell, 2018, 172(1-2): 90-105.e23.
doi: 10.1016/j.cell.2017.11.031
102 CUI Q, SHI H, YE P, et al. m 6 a RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J] . Cell Rep, 2017, 18(11): 2622-2634.
doi: 10.1016/j.celrep.2017.02.059
103 LIU J, ECKERT M A, HARADA B T, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer[J]. Nat Cell Biol, 2018, 20(9): 1074-1083.
doi: 10.1038/s41556-018-0174-4
104 ALARCóN C R, LEE H, GOODARZI H, et al. N 6-methyladenosine marks primary microRNAs for processing[J] . Nature, 2015, 519(7544): 482-485.
doi: 10.1038/nature14281
105 ZHOU C, MOLINIE B, DANESHVAR K, et al. Genome-wide maps of m6a circrnas identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs[J]. Cell Rep, 2017, 20(9): 2262-2276.
doi: 10.1016/j.celrep.2017.08.027
106 ZHOU K I, PARISIEN M, DAI Q, et al. N 6-methyladenosine modification in a long noncoding rna hairpin predisposes its conformation to protein binding[J] . J Mol Biol, 2016, 428(5): 822-833.
doi: 10.1016/j.jmb.2015.08.021
107 WEI J W, HUANG K, YANG C, et al. Non-coding RNAs as regulators in epigenetics[J]. Oncology Rep, 2017, 37(1): 3-9.
doi: 10.3892/or.2016.5236
108 BARTEL D P . MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
doi: 10.1016/j.cell.2009.01.002
109 MACHEDA M L, ROGERS S, BEST J D . Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer[J]. J Cell Physiol, 2005, 202(3): 654-662.
doi: 10.1002/jcp.20166
110 CHEN B, TANG H, LIU X, et al. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer[J]. Cancer Lett, 2015, 356(2): 410-417.
doi: 10.1016/j.canlet.2014.09.028
111 YAMASAKI T, SEKI N, YOSHINO H, et al. Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma[J]. Cancer Sci, 2013, 104(11): 1411-1419.
doi: 10.1111/cas.12240
112 FEI X, QI M, WU B, et al. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression[J] . FEBS Lett, 2012, 586(4): 392-397.
doi: 10.1016/j.febslet.2012.01.006
113 GREGERSEN L H, JACOBSEN A, FRANKEL L B, et al. MicroRNA-143 down-regulates hexokinase 2 in colon cancer cells[J]. BMC Cancer, 2012, 12(1): 232.
doi: 10.1186/1471-2407-12-232
114 SONG J, WU X, LIU F, et al. Long non-coding RNAPVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma[J]. Biochem BioPhys Res Commun, 2017, 490(2): 217-224.
doi: 10.1016/j.bbrc.2017.06.024
115 TSAI W C, HSU P W C, LAI T C, et al. MicroRNA-122,a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma[J]. Hepatology, 2009, 49(5): 1571-1582.
doi: 10.1002/hep.22806
116 LI Y, KONG D, AHMAD A, et al. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion[J]. Epigenetics, 2012, 7(8): 940-949.
doi: 10.4161/epi.21236
117 KEFAS B, COMEAU L, ERDLE N, et al. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells[J]. Neuro-Oncology, 2010, 12(11): 1102-1112.
doi: 10.1093/neuonc/noq080
118 LIU A M, XU Z, SHEK F H, et al. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma[J/OL]. PLoS One, 2014, 9(1): e86872.
doi: 10.1371/journal.pone.0086872
119 TANIGUCHI K, SUGITO N, KUMAZAKI M, et al. MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer[J]. Cancer Lett, 2015, 363(1): 17-27.
doi: 10.1016/j.canlet.2015.03.026
120 WANG J, WANG H, LIU A, et al. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer[J]. Oncotarget, 2015, 6(23): 19456-19468.
doi: 10.18632/oncotarget.3318
121 LIU L, WANG Y, BAI R, et al. MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation[J/OL]. Oncogenesis, 2016, 5(5): e224.
doi: 10.1038/oncsis.2016.35
122 TAKAHASHI K, YAN I K, HAGA H, et al. Modulation of hypoxia-signaling pathways by extracellular linc-RoR[J]. J Cell Sci, 2014, 127(7): 1585-1594.
doi: 10.1242/jcs.141069
123 CHEN Z, ZENG H, GUO Y, et al. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc[J]. J Exp Clin Cancer Res, 2010, 29(1): 151.
doi: 10.1186/1756-9966-29-151
124 YAMAMURA S, SAINI S, MAJID S, et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells[J/OL]. PLoS One, 2012, 7(1): e29722.
doi: 10.1371/journal.pone.0029722
125 TSAI W C, HSU S D, HSU C S, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis[J]. J Clin Invest, 2012, 122(8): 2884-2897.
doi: 10.1172/jci63455
126 HE J, ZHAO K, ZHENG L, et al. Upregulation of microRNA-122 by farnesoid X receptor suppresses the growth of hepatocellular carcinoma cells[J]. Mol Cancer, 2015, 14(1): 163.
doi: 10.1186/s12943-015-0427-9
127 ESAU C, DAVIS S, MURRAY S F, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab, 2006, 3(2): 87-98.
doi: 10.1016/j.cmet.2006.01.005
128 CUI M, WANG Y, SUN B, et al. MiR-205 modulatesabnormal lipid metabolism of hepatoma cells via targeting acyl-CoA synthetase long-chain family member 1 (ACSL1) mRNA[J]. Biochem BioPhys Res Commun, 2014, 444(2): 270-275.
doi: 10.1016/j.bbrc.2014.01.051
129 NOGUCHI S, IWASAKI J, KUMAZAKI M, et al. Chemically modified synthetic microRNA-205 inhibits the growth of melanoma cells in vitro and in vivo[J] . Mol Ther, 2013, 21(6): 1204-1211.
doi: 10.1038/mt.2013.70
130 PHANG J M, LIU W, HANCOCK C N, et al. Proline metabolism and cancer[J]. Curr Opin Clin Nutrition Metabolic Care, 2015, 18(1): 71-77.
doi: 10.1097/mco.0000000000000121
131 GAO P, TCHERNYSHYOV I, CHANG T C, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature, 2009, 458(7239): 762-765.
doi: 10.1038/nature07823
132 LIU W, LE A, HANCOCK C, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC[J]. Proc Natl Acad Sci USA, 2012, 109(23): 8983-8988.
doi: 10.1073/pnas.1203244109
133 JECK W R, SHARPLESS N E . Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5): 453-461.
doi: 10.1038/nbt.2890
134 HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388.
doi: 10.1038/nature11993
135 STOLL L, SOBEL J, RODRIGUEZ-TREJO A, et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions[J]. Mol Metab, 2018, 69-83.
doi: 10.1016/j.molmet.2018.01.010
136 ZHENG Q, BAO C, GUO W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7(1): 11215.
doi: 10.1038/ncomms11215
137 LIANG G, LIU Z, TAN L, et al. HIF1α-associatedcircDENND4C promotes proliferation of breast cancer cells in hypoxic environment[J]. Anticancer Res, 2017, 37(8): 4337-4343.
doi: 10.21873/anticanres.11827
138 DANG R Y, LIU F L, LI Y . Circular RNA hsa_circ_ 0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis[J]. Biochem BioPhys Res Commun, 2017, 490(2): 104-110.
doi: 10.1016/j.bbrc.2017.05.164
139 XIE H, REN X, XIN S, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer[J]. Oncotarget, 2016, 7(18): 26680-26691.
doi: 10.18632/oncotarget.8589
140 YU C Y, LI T C, WU Y Y, et al. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency[J]. Nat Commun, 2017, 8(1): 1149.
doi: 10.1038/s41467-017-01216-w
141 ULITSKY I, BARTEL D P . lincRNAs:genomics,evolution,and mechanisms[J]. Cell, 2013, 154(1): 26-46.
doi: 10.1016/j.cell.2013.06.020
142 ZOU Z W, MA C, MEDORO L, et al. LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation,reprograming cell glucose metabolism and inducing side-population stem-like cancer cells[J]. Oncotarget, 2016, 7(38): 61741-61754.
doi: 10.18632/oncotarget.11437
143 WEI S, FAN Q, YANG L, et al. Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling[J]. Oncology Rep, 2017, 38(3): 1902-1908.
doi: 10.3892/or.2017.5840
144 ZHAO Y, LIU Y, LIN L, et al. The lncRNA MACC1- AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1[J]. Mol Cancer, 2018, 17(1): 69.
doi: 10.1186/s12943-018-0820-2
145 LI H, LI J, JIA S, et al. miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer[J]. Oncotarget, 2015, 6(31): 31958-31984.
doi: 10.18632/oncotarget.5579
146 MA M Z, ZHANG Y, WENG M Z, et al. Long noncoding RNA GCASPC,a target of miR-17-3p,negatively regulates pyruvate carboxylase–dependent cell proliferation in gallbladder cancer[J]. Cancer Res, 2016, 76(18): 5361-5371.
doi: 10.1158/0008-5472.Can-15-3047
147 NGUYEN H B, BABCOCK J T, WELLS C D, et al. LKB1 tumor suppressor regulates AMP kinase/mTOR-independent cell growth and proliferation via the phosphorylation of Yap[J]. Oncogene, 2013, 32(35): 4100-4109.
doi: 10.1038/onc.2012.431
148 CHEN Z, LI J L, LIN S, et al. cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth[J]. J Clin Invest, 2016, 126(6): 2267-2279.
doi: 10.1172/jci85250
149 LIU X, XIAO Z D, HAN L, et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress[J]. Nat Cell Biol, 2016, 18(4): 431-442.
doi: 10.1038/ncb3328
150 YANG F, ZHANG H, MEI Y, et al. Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect[J]. Mol Cell, 2014, 53(1): 88-100.
doi: 10.1016/j.molcel.2013.11.004
151 LUO F, LIU X, LING M, et al. The lncRNA MALAT1,acting through HIF-1α stabilization,enhances arsenite-induced glycolysis in human hepatic L-02 cells[J]. BioChim Biophysica Acta (BBA) - Mol Basis Dis, 2016, 1862(9): 1685-1695.
doi: 10.1016/j.bbadis.2016.06.004
152 WU W, HU Q, NIE E, et al. Hypoxia induces H19 expression through direct and indirect Hif-1α activity,promoting oncogenic effects in glioblastoma[J]. Sci Rep, 2017, 7(1): 45029.
doi: 10.1038/srep45029
153 LIN A, LI C, XING Z, et al. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer[J]. Nat Cell Biol, 2016, 18(2): 213-224.
doi: 10.1038/ncb3295
154 MADDOCKS O D K, VOUSDEN K H . Metabolic regulation by p53[J]. J Mol Med, 2011, 89(3): 237-245.
doi: 10.1007/s00109-011-0735-5
155 WU M, AN J, ZHENG Q, et al. Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR[J]. Oncotarget, 2016, 7(41): 66525-66539.
doi: 10.18632/oncotarget.9089
156 ZHOU Y, ZHONG Y, WANG Y, et al. Activation of p53 by MEG3 non-coding RNA[J]. J Biol Chem, 2007, 282(34): 24731-24742.
doi: 10.1074/jbc.M702029200
157 MAHMOUDI S, HENRIKSSON S, CORCORAN M, et al. Wrap53,a natural p53 antisense transcript required for p53 induction upon DNA damage[J]. Mol Cell, 2009, 33(4): 462-471.
doi: 10.1016/j.molcel.2009.01.028
158 TRIPATHI V, SHEN Z, CHAKRABORTY A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB[J/OL]. PLoS Genet, 2013, 9(3): e1003368.
doi: 10.1371/journal.pgen.1003368
[1] 邵一鸣,苏力德,郝睿,王茜茜,那仁满都拉. 乙型肝炎病毒诱发肝细胞癌分子机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 113-122.
[2] 陈菲,虞敏,钟永红,华雯,黄华琼. 中性粒细胞在哮喘中的地位和作用[J]. 浙江大学学报(医学版), 2021, 50(1): 123-130.
[3] 颜京,张婷婷,赵葵. 核医学分子影像探针应用于神经内分泌肿瘤的研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 131-137.
[4] 张明佺,潘俊辰,黄蓬. RAS基因与脂代谢在恶性肿瘤中的相互调控[J]. 浙江大学学报(医学版), 2021, 50(1): 17-22.
[5] 胡鑫暘,金洪传,朱丽媛. 谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制[J]. 浙江大学学报(医学版), 2021, 50(1): 32-40.
[6] 孟颖,王启扉,吕志民. 胆固醇代谢与肿瘤[J]. 浙江大学学报(医学版), 2021, 50(1): 23-31.
[7] 付媛媛,姜晶鑫,陈述政,邱福铭. T1期乳腺癌患者发生同侧腋窝淋巴结转移风险列线图的建立[J]. 浙江大学学报(医学版), 2021, 50(1): 81-89.
[8] 杨泽然,张欣,马杰,金丽,何徐军. 大肠癌患者肿瘤相关血管中胰岛素受体表达及其与肿瘤组织病理学特征的关系[J]. 浙江大学学报(医学版), 2020, 49(6): 725-731.
[9] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[10] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[11] 胡凌微,胡真真,杨建滨,张玉,施叶珍,祝莎莎,杨茹莱,黄新文. 递送及储存条件对新生儿干血斑标本中氨基酸和肉碱浓度的影响[J]. 浙江大学学报(医学版), 2020, 49(5): 565-573.
[12] 沈亚平,严恺,董旻岳,杨茹莱,黄新文. 联合氧化磷酸化缺陷症1型一家系临床表型及GFM1基因突变分析[J]. 浙江大学学报(医学版), 2020, 49(5): 574-580.
[13] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[14] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[15] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.