专题报道 |
|
|
|
|
表观遗传与肿瘤代谢研究进展 |
韩恒毅( ),冯帆,李海涛( ) |
清华大学医学院,北京 100084 |
|
Research advances on epigenetics and cancer metabolism |
HAN Hengyi( ),FENG Fan,LI Haitao( ) |
School of Medicine,Tsinghua University,Beijing 100084,China |
1 |
WARBURG O, WIND F, NEGELEIN E . The metabo-lismof tumors in the body[J]. J General Physiol, 1927, 8(6): 519-530.
doi: 10.1085/jgp.8.6.519
|
2 |
DEBERARDINIS R J, MANCUSO A, DAIKHIN E, et al. Beyond aerobic glycolysis:transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis[J]. Proc Natl Acad Sci USA, 2007, 104(49): 19345-19350.
doi: 10.1073/pnas.0709747104
|
3 |
HSU P P, SABATINI D M . Cancer cell metabolism:warburg and beyond[J]. Cell, 2008, 134(5): 703-707.
doi: 10.1016/j.cell.2008.08.021
|
4 |
JAENISCH R, BIRD A . Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J]. Nat Genet, 2003, 33(S3): 245-254.
doi: 10.1038/ng1089
|
5 |
HERCEG Z, VAISSIèRE T . Epigenetic mechanisms and cancer:an interface between the environment and the genome[J]. Epigenetics, 2011, 6(7): 804-819.
doi: 10.4161/epi.6.7.16262
|
6 |
EDEN A, GAUDET F, WAGHMARE A, et al. Chromosomal instability and tumors promoted by DNA hypomethylation[J]. Science, 2003, 300(5618): 455.
doi: 10.1126/science.1083557
|
7 |
FRAGA M F, BALLESTAR E, VILLAR-GAREA A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer[J]. Nat Genet, 2005, 37(4): 391-400.
doi: 10.1038/ng1531
|
8 |
MENTCH S J, MEHRMOHAMADI M, HUANG L, et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism[J]. Cell Metab, 2015, 22(5): 861-873.
doi: 10.1016/j.cmet.2015.08.024
|
9 |
LEE J V, CARRER A, SHAH S, et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation[J]. Cell Metab, 2014, 20(2): 306-319.
doi: 10.1016/j.cmet.2014.06.004
|
10 |
LI X, KAZGAN N . Mammalian sirtuins and energy metabolism[J]. Int J Biol Sci, 2011, 7(5): 575-587.
doi: 10.7150/ijbs.7.575
|
11 |
BIRD A P . CPG-rich islands and the function of dna methylation[J]. Nature, 1986, 321(6067): 209-213.
doi: 10.1038/321209a0
|
12 |
YEIVIN A,RAZIN A. Gene methylation patterns and expression[J]. Exs,1993,64:523–568.DOI:10. 1007/978-3-0348-9118-9_24 .
|
13 |
ROBERTSON K D, UZVOLGYI E, LIANG G, et al. The human DNA methyltransferases (DNMTs) 1,3a and 3b:coordinate mRNA expression in normal tissues and overexpression in tumors[J]. Nucleic Acids Res, 1999, 27(11): 2291-2298.
doi: 10.1093/nar/27.11.2291
|
14 |
HAASE C, BERGMANN R, FUECHTNER F, et al. L-type amino acid transporters LAT1 and LAT4 in cancer:uptake of 3-O-Methyl-6-18F-Fluoro-L-Dopa in human adenocarcinoma and squamous cell carcinoma in vitro and in vivo[J] . J Nucl Med, 2007, 48(12): 2063-2071.
doi: 10.2967/jnumed.107.043620
|
15 |
MARTíNEZ-CHANTAR M L, VáZQUEZ-CHANTADA M, ARIZ U, et al. Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice[J]. Hepatology, 2007, 47(4): 1191-1199.
doi: 10.1002/hep.22159
|
16 |
GUO J U, SU Y, ZHONG C, et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain[J]. Cell, 2011, 145(3): 423-434.
doi: 10.1016/j.cell.2011.03.022
|
17 |
KOHLI R M, ZHANG Y . TET enzymes,TDG and the dynamics of DNA demethylation[J]. Nature, 2013, 502(7472): 472-479.
doi: 10.1038/nature12750
|
18 |
GAMBICHLER T, SAND M, SKRYGAN M . Loss of 5-hydroxymethylcytosine and ten-eleven translocation 2 protein expression in malignant melanoma[J]. Melanoma Res, 2013, 23(3): 218-220.
doi: 10.1097/CMR.0b013e32835f9bd4
|
19 |
KUDO Y, TATEISHI K, YAMAMOTO K, et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation[J]. Cancer Sci, 2012, 103(4): 670-676.
doi: 10.1111/j.1349-7006.2012.02213.x
|
20 |
XIAO M, YANG H, XU W, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors[J]. Genes Dev, 2012, 26(12): 1326-1338.
doi: 10.1101/gad.191056.112
|
21 |
IKEGAMI K, OHGANE J, TANAKA S, et al. Interplay between DNA methylation,histone modification and chromatin remodeling in stem cells and during development[J]. Int J Dev Biol, 2009, 53(2-3): 203-214.
doi: 10.1387/ijdb.082741ki
|
22 |
DESAI S, DING M, WANG B, et al. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers[J]. Oncotarget, 2014, 5(18): 8202-8210.
doi: 10.18632/oncotarget.1159
|
23 |
NING X, QI H, LI R, et al. Synthesis and antitumor activity of novel 2,3-didithiocarbamate substituted naphthoquinones as inhibitors of pyruvate kinase M2 isoform[J]. J Enzyme Inhib Med Chem, 2018, 33(1): 126-129.
doi: 10.1080/14756366.2017.1404591
|
24 |
KANEKO Y,SHIBUYA M,NAKAYAMA T,et al. Hypomethylation of C-MYC and epidermal growth-factor receptor genes in human hepatocellular-carcinoma and fetal liver[J]. Jap J Cancer Res,1985,76(12):1136–1140 .
|
25 |
HANADA M,DELIA D,AIELLO A,et al. BCL-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic-leukemia[J]. Blood,1993,82(6):1820–1828 .
|
26 |
POGELL B M,MCGILVERY R W. Partial purification of fructose-1,6-diphosphatase[J]. J Biol Chem,1954,208(1):149–157 .
|
27 |
DONG C, YUAN T, WU Y, et al. Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer[J]. Cancer Cell, 2013, 23(3): 316-331.
doi: 10.1016/j.ccr.2013.01.022
|
28 |
ZHANG J, WANG J, XING H, et al. Down-regulation of FBP1 by ZEB1-mediated repression confers to growth and invasion in lung cancer cells[J]. Mol Cell Biochem, 2016, 411(1-2): 331-340.
doi: 10.1007/s11010-015-2595-8
|
29 |
BáRCENA-VARELA M, CARUSO S, LLERENA S, et al. Dual targeting of histone methyltransferase G9a and DNA‐methyltransferase 1 for the treatment of experimental hepatocellular carcinoma[J]. Hepatology, 2019, 69(2): 587-603.
doi: 10.1002/hep.30168
|
30 |
LOPEZ-SERRA P,MARCILLA M,VILLANUEVA A,et al. A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect [J]. Nat Commun,2014,5:3608.DOI:10.1038/ncomms4608 .
|
31 |
DüVEL K, YECIES J L, MENON S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J]. Mol Cell, 2010, 39(2): 171-183.
doi: 10.1016/j.molcel.2010.06.022
|
32 |
SEMENZA G L . Regulation of cancer cell metabolism by hypoxia-inducible factor 1[J]. Semin Cancer Biol, 2009, 19(1): 12-16.
doi: 10.1016/j.semcancer.2008.11.009
|
33 |
KANG Y H, LEE H S, KIM W H . Promoter methylation and silencing of PTEN in gastric carcinoma[J]. Lab Invest, 2002, 82(3): 285-291.
doi: 10.1038/labinvest.3780422
|
34 |
VANHARANTA S, SHU W, BRENET F, et al. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer[J]. Nat Med, 2013, 19(1): 50-56.
doi: 10.1038/nm.3029
|
35 |
RAWLUSZKO A A, BUJNICKA K E, HORBACKA K, et al. Expression and DNA methylation levels of prolyl hydroxylases PHD1,PHD2,PHD3 and asparaginyl hydroxylase FIH in colorectal cancer[J]. BMC Cancer, 2013, 13(1): 526.
doi: 10.1186/1471-2407-13-526
|
36 |
TROJAN J, BRIEGER A, RAEDLE J, et al. 5’-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer[J]. Gut, 2000, 47(2): 272-276.
doi: 10.1136/gut.47.2.272
|
37 |
XU Y, LIU C, CHEN S, et al. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease[J] . Cell Signal, 2014, 26(8): 1680-1689.
doi: 10.1016/j.cellsig.2014.04.009
|
38 |
LI H,WANG J,XU H,et al. Decreased fructose-1,6-bisphosphatase-2 expression promotes glycolysis and growth in gastric cancer cells [J]. Mol Cancer,2013,12(1):110.DOI:10.1186/1476-4598-12-110 .
|
39 |
KOUZARIDES T . Chromatin modifications and their function[J]. Cell, 2007, 128(4): 693-705.
doi: 10.1016/j.cell.2007.02.005
|
40 |
STRAHL B D, ALLIS C D . The language of covalent histone modifications[J]. Nature, 2000, 403(6765): 41-45.
doi: 10.1038/47412
|
41 |
JENUWEIN T, ALLIS C D . Translating the histone code[J]. Science, 2001, 293(5532): 1074-1080.
doi: 10.1126/science.1063127
|
42 |
ZHANG Y, REINBERG D . Transcription regulation by histone methylation:interplay between different covalent modifications of the core histone tails[J]. Genes Dev, 2001, 15(18): 2343-2360.
doi: 10.1101/gad.927301
|
43 |
MARTIN C, ZHANG Y . The diverse functions of histone lysine methylation[J]. Nat Rev Mol Cell Biol, 2005, 6(11): 838-849.
doi: 10.1038/nrm1761
|
44 |
SHILATIFARD A . Chromatin modifications by methylation and ubiquitination:implications in the regulation of gene expression[J]. Annu Rev Biochem, 2006, 75(1): 243-269.
doi: 10.1146/annurev.biochem.75.103004.142422
|
45 |
DORRANCE A M, LIU S, YUAN W, et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations[J] . J Clin Invest, 2006, 116(10): 2707-2716.
doi: 10.1172/jci25546
|
46 |
SIMON J A, LANGE C A . Roles of the EZH2 histone methyltransferase in cancer epigenetics[J]. Mutat Res/Fundamental Mol Mech Mutagenesis, 2008, 647(1-2): 21-29.
doi: 10.1016/j.mrfmmm.2008.07.010
|
47 |
MCCABE M T, OTT H M, GANJI G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations[J]. Nature, 2012, 492(7427): 108-112.
doi: 10.1038/nature11606
|
48 |
VARAMBALLY S, DHANASEKARAN S M, ZHOU M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer[J]. Nature, 2002, 419(6907): 624-629.
doi: 10.1038/nature01075
|
49 |
HU H, QIAN K, HO M C, et al. Small molecule inhibitors of protein arginine methyltransferases[J]. Expert Opin Investig Drugs, 2016, 25(3): 335-358.
doi: 10.1517/13543784.2016.1144747
|
50 |
MATHIOUDAKI K, SCORILAS A, ARDAVANIS A, et al. Clinical evaluation of PRMT1 gene expression in breast cancer[J]. Tumor Biol, 2011, 32(3): 575-582.
doi: 10.1007/s13277-010-0153-2
|
51 |
CHEUNG N, FUNG T K, ZEISIG B B, et al. Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia[J]. Cancer Cell, 2016, 29(1): 32-48.
doi: 10.1016/j.ccell.2015.12.007
|
52 |
KOOISTRA S M, HELIN K . Molecular mechanisms and potential functions of histone demethylases[J]. Nat Rev Mol Cell Biol, 2012, 13(5): 297-311.
doi: 10.1038/nrm3327
|
53 |
FENG Z, YAO Y, ZHOU C, et al. Pharmacological inhibition of LSD1 for the treatment of MLL-rearranged leukemia[J]. J Hematol Oncol, 2016, 9(1): 24.
doi: 10.1186/s13045-016-0252-7
|
54 |
VERDIN E, OTT M . 50 years of protein acetylation:from gene regulation to epigenetics,metabolism and beyond[J]. Nat Rev Mol Cell Biol, 2015, 16(4): 258-264.
doi: 10.1038/nrm3931
|
55 |
KOUZARIDES T . Histone acetylases and deacetylases in cell proliferation[J]. Curr Opin Genets Dev, 1999, 9(1): 40-48.
doi: 10.1016/s0959-437x(99)80006-9
|
56 |
WELLEN K E, HATZIVASSILIOU G, SACHDEVA U M, et al. ATP-citrate lyase links cellular metabolism to histone acetylation[J]. Science, 2009, 324(5930): 1076-1080.
doi: 10.1126/science.1164097
|
57 |
KNOEPFLER P S, ZHANG X, CHENG P F, et al. Myc influences global chromatin structure[J]. EMBO J, 2006, 25(12): 2723-2734.
doi: 10.1038/sj.emboj.7601152
|
58 |
RICHTERS A, KOEHLER A N . Epigenetic modula- tion using small molecules - targeting histone acetyltransferases in disease[J]. Curr Med Chem, 2017, 24(37): 4121-4150.
doi: 10.2174/0929867324666170223153115
|
59 |
SPANGE S, WAGNER T, HEINZEL T, et al. Acetylation of non-histone proteins modulates cellular signalling at multiple levels[J]. Int J Biochem Cell Biol, 2009, 41(1): 185-198.
doi: 10.1016/j.biocel.2008.08.027
|
60 |
SEGRé C V, CHIOCCA S . Regulating the regulators:the post-translational code of class I HDAC1 and HDAC2[J]. J Biomed Biotech, 2011, 690848.
doi: 10.1155/2011/690848
|
61 |
ZHANG Z G, QIN C Y . Sirt6 suppresses hepatocellular carcinoma cell growth via inhibiting the extracellular signal-regulated kinase signaling pathway[J]. Mol Med Rep, 2014, 9(3): 882-888.
doi: 10.3892/mmr.2013.1879
|
62 |
BARBER M F, MICHISHITA-KIOI E, XI Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation[J]. Nature, 2012, 487(7405): 114-118.
doi: 10.1038/nature11043
|
63 |
LIU P Y, XU N, MALYUKOVA A, et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins[J]. Cell Death Differ, 2013, 20(3): 503-514.
doi: 10.1038/cdd.2012.147
|
64 |
CHEN Y, SPRUNG R, TANG Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones[J]. Mol Cellular Proteomics, 2007, 6(5): 812-819.
doi: 10.1074/mcp.M700021-MCP200
|
65 |
TAN M, LUO H, LEE S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification[J]. Cell, 2011, 146(6): 1016-1028.
doi: 10.1016/j.cell.2011.08.008
|
66 |
XIE Z, DAI J, DAI L, et al. Lysine succinylation and lysine malonylation in histones[J]. Mol Cellular Proteomics, 2012, 11(5): 100-107.
doi: 10.1074/mcp.M111.015875
|
67 |
XIE Z, ZHANG D, CHUNG D, et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation[J]. Mol Cell, 2016, 62(2): 194-206.
doi: 10.1016/j.molcel.2016.03.036
|
68 |
LEE K K, WORKMAN J L . Histone acetyltransferase complexes:one size doesn’t fit all[J]. Nat Rev Mol Cell Biol, 2007, 8(4): 284-295.
doi: 10.1038/nrm2145
|
69 |
ROTH S Y, DENU J M, ALLIS C D . Histone acetyltransferases[J]. Annu Rev Biochem, 2001, 70(1): 81-120.
doi: 10.1146/annurev.biochem.70.1.81
|
70 |
CHENG Z, TANG Y, CHEN Y, et al. Molecular characterization of propionyllysines in non-histone proteins[J]. Mol Cell Proteomics, 2009, 8(1): 45-52.
doi: 10.1074/mcp.M800224-MCP200
|
71 |
KACZMARSKA Z, ORTEGA E, GOUDARZI A, et al. Structure of p300 in complex with acyl-CoA variants[J]. Nat Chem Biol, 2017, 13(1): 21-29.
doi: 10.1038/nchembio.2217
|
72 |
SABARI B R, TANG Z, HUANG H, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation[J]. Mol Cell, 2015, 58(2): 203-215.
doi: 10.1016/j.molcel.2015.02.029
|
73 |
BERNDSEN C E, ALBAUGH B N, TAN S, et al. Catalytic mechanism of a MYST family histone acetyltransferase[J]. Biochemistry, 2007, 46(3): 623-629.
doi: 10.1021/bi602513x
|
74 |
LEEMHUIS H, PACKMAN L C, NIGHTINGALE K P, et al. The human histone acetyltransferase P/CAF is a promiscuous histone propionyltransferase[J]. Chembiochem, 2008, 9(4): 499-503.
doi: 10.1002/cbic.200700556
|
75 |
RINGEL A E, WOLBERGER C . Structural basis for acyl-group discrimination by human Gcn5L2[J]. Acta Crystlogr D Struct Biol, 2016, 72(7): 841-848.
doi: 10.1107/s2059798316007907
|
76 |
PENG C, LU Z, XIE Z, et al. The first identification oflysine malonylation substrates and its regulatory enzyme[J]. Mol Cell Proteomics, 2011, 10(12): M111.012658.
doi: 10.1074/mcp.M111.012658
|
77 |
JIANG G, NGUYEN D, ARCHIN N M, et al. HIV latency is reversed by ACSS2-driven histone crotonylation[J]. J Clin Invest, 2018, 128(3): 1190-1198.
doi: 10.1172/jci98071
|
78 |
MASHIMO T, PICHUMANI K, VEMIREDDY V, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases[J]. Cell, 2014, 159(7): 1603-1614.
doi: 10.1016/j.cell.2014.11.025
|
79 |
COMERFORD S A, HUANG Z, DU X, et al. Acetate dependence of tumors[J]. Cell, 2014, 159(7): 1591-1602.
doi: 10.1016/j.cell.2014.11.020
|
80 |
HALLOWS W C, LEE S, DENU J M . Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases[J]. Proc Natl Acad Sci USA, 2006, 103(27): 10230-10235.
doi: 10.1073/pnas.0604392103
|
81 |
FELDMAN J L, BAEZA J, DENU J M . Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins[J]. J Biol Chem, 2013, 288(43): 31350-31356.
doi: 10.1074/jbc.C113.511261
|
82 |
TAN M, PENG C, ANDERSON K A, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5[J]. Cell Metab, 2014, 19(4): 605-617.
doi: 10.1016/j.cmet.2014.03.014
|
83 |
PARK J, CHEN Y, TISHKOFF D X, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways[J]. Mol Cell, 2013, 50(6): 919-930.
doi: 10.1016/j.molcel.2013.06.001
|
84 |
DU J, ZHOU Y, SU X, et al. Sirt5 is a NAD-dependentprotein lysine demalonylase and desuccinylase[J]. Science, 2011, 334(6057): 806-809.
doi: 10.1126/science.1207861
|
85 |
ALAMOUDI A A, ALNOURY A, GAD H . miRNA in tumour metabolism and why could it be the preferred pathway for energy reprograming[J]. Brief Funct Genomics, 2018, 17(3): 157-169.
doi: 10.1093/bfgp/elx023
|
86 |
COHEN A L, HOLMEN S L, COLMAN H . IDH1 and IDH2 mutations in gliomas[J]. Curr Neurol NeuroSci Rep, 2013, 13(5): 345.
doi: 10.1007/s11910-013-0345-4
|
87 |
FIGLIA G, WILLNOW P, TELEMAN A A . Metabo- lites regulate cell signaling and growth via covalent modification of proteins[J]. Dev Cell, 2020, 54(2): 156-170.
doi: 10.1016/j.devcel.2020.06.036
|
88 |
HAN X, XIANG X, YANG H, et al. p300-catalyzed lysine crotonylation promotes the proliferation,invasion,and migration of HeLa cells via heterogeneous nuclear ribonucleoprotein A1[J]. Anal Cellular Pathol, 2020, 1-6.
doi: 10.1155/2020/5632342
|
89 |
HUANG H, WANG D L, ZHAO Y . Quantitative crotonylome analysis expands the roles of p300 in the regulation of lysine crotonylation pathway[J]. Proteomics, 2018, 18(15): 1700230.
doi: 10.1002/pmic.201700230
|
90 |
LIU J, YUE Y, HAN D, et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N 6-adenosine methylation[J] . Nat Chem Biol, 2014, 10(2): 93-95.
doi: 10.1038/nchembio.1432
|
91 |
PING X L, SUN B F, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N 6-methyladenosine methyltransferase[J] . Cell Res, 2014, 24(2): 177-189.
doi: 10.1038/cr.2014.3
|
92 |
JIA G, FU Y, ZHAO X, et al. N 6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J] . Nat Chem Biol, 2011, 7(12): 885-887.
doi: 10.1038/nchembio.687
|
93 |
ZHENG G, DAHL J A, NIU Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29.
doi: 10.1016/j.molcel.2012.10.015
|
94 |
DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206.
doi: 10.1038/nature11112
|
95 |
WANG X, LU Z, GOMEZ A, et al. N 6-methyladeno- sine-dependent regulation of messenger RNA stability[J] . Nature, 2014, 505(7481): 117-120.
doi: 10.1038/nature12730
|
96 |
WANG X, ZHAO B S, ROUNDTREE I A, et al. N 6-methyladenosine modulates messenger RNA translation efficiency[J] . Cell, 2015, 161(6): 1388-1399.
doi: 10.1016/j.cell.2015.05.014
|
97 |
XIAO W, ADHIKARI S, DAHAL U, et al. Nuclear m 6 a reader YTHDC1 regulates mRNA splicing[J] . Mol Cell, 2016, 61(4): 507-519.
doi: 10.1016/j.molcel.2016.01.012
|
98 |
LI Z, WENG H, SU R, et al. FTO plays an oncogenicrole in acute myeloid leukemia as a N 6-methyladenosine RNA demethylase[J] . Cancer Cell, 2017, 31(1): 127-141.
doi: 10.1016/j.ccell.2016.11.017
|
99 |
ZHANG S, ZHAO B S, ZHOU A, et al. M 6 a demethylase alkbh5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program[J] . Cancer Cell, 2017, 31(4): 591-606.e6.
doi: 10.1016/j.ccell.2017.02.013
|
100 |
TANABE A, TANIKAWA K, TSUNETOMI M, et al. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated[J]. Cancer Lett, 2016, 376(1): 34-42.
doi: 10.1016/j.canlet.2016.02.022
|
101 |
SU R, DONG L, LI C, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling[J]. Cell, 2018, 172(1-2): 90-105.e23.
doi: 10.1016/j.cell.2017.11.031
|
102 |
CUI Q, SHI H, YE P, et al. m 6 a RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J] . Cell Rep, 2017, 18(11): 2622-2634.
doi: 10.1016/j.celrep.2017.02.059
|
103 |
LIU J, ECKERT M A, HARADA B T, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer[J]. Nat Cell Biol, 2018, 20(9): 1074-1083.
doi: 10.1038/s41556-018-0174-4
|
104 |
ALARCóN C R, LEE H, GOODARZI H, et al. N 6-methyladenosine marks primary microRNAs for processing[J] . Nature, 2015, 519(7544): 482-485.
doi: 10.1038/nature14281
|
105 |
ZHOU C, MOLINIE B, DANESHVAR K, et al. Genome-wide maps of m6a circrnas identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs[J]. Cell Rep, 2017, 20(9): 2262-2276.
doi: 10.1016/j.celrep.2017.08.027
|
106 |
ZHOU K I, PARISIEN M, DAI Q, et al. N 6-methyladenosine modification in a long noncoding rna hairpin predisposes its conformation to protein binding[J] . J Mol Biol, 2016, 428(5): 822-833.
doi: 10.1016/j.jmb.2015.08.021
|
107 |
WEI J W, HUANG K, YANG C, et al. Non-coding RNAs as regulators in epigenetics[J]. Oncology Rep, 2017, 37(1): 3-9.
doi: 10.3892/or.2016.5236
|
108 |
BARTEL D P . MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
doi: 10.1016/j.cell.2009.01.002
|
109 |
MACHEDA M L, ROGERS S, BEST J D . Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer[J]. J Cell Physiol, 2005, 202(3): 654-662.
doi: 10.1002/jcp.20166
|
110 |
CHEN B, TANG H, LIU X, et al. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer[J]. Cancer Lett, 2015, 356(2): 410-417.
doi: 10.1016/j.canlet.2014.09.028
|
111 |
YAMASAKI T, SEKI N, YOSHINO H, et al. Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma[J]. Cancer Sci, 2013, 104(11): 1411-1419.
doi: 10.1111/cas.12240
|
112 |
FEI X, QI M, WU B, et al. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression[J] . FEBS Lett, 2012, 586(4): 392-397.
doi: 10.1016/j.febslet.2012.01.006
|
113 |
GREGERSEN L H, JACOBSEN A, FRANKEL L B, et al. MicroRNA-143 down-regulates hexokinase 2 in colon cancer cells[J]. BMC Cancer, 2012, 12(1): 232.
doi: 10.1186/1471-2407-12-232
|
114 |
SONG J, WU X, LIU F, et al. Long non-coding RNAPVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma[J]. Biochem BioPhys Res Commun, 2017, 490(2): 217-224.
doi: 10.1016/j.bbrc.2017.06.024
|
115 |
TSAI W C, HSU P W C, LAI T C, et al. MicroRNA-122,a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma[J]. Hepatology, 2009, 49(5): 1571-1582.
doi: 10.1002/hep.22806
|
116 |
LI Y, KONG D, AHMAD A, et al. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion[J]. Epigenetics, 2012, 7(8): 940-949.
doi: 10.4161/epi.21236
|
117 |
KEFAS B, COMEAU L, ERDLE N, et al. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells[J]. Neuro-Oncology, 2010, 12(11): 1102-1112.
doi: 10.1093/neuonc/noq080
|
118 |
LIU A M, XU Z, SHEK F H, et al. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma[J/OL]. PLoS One, 2014, 9(1): e86872.
doi: 10.1371/journal.pone.0086872
|
119 |
TANIGUCHI K, SUGITO N, KUMAZAKI M, et al. MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer[J]. Cancer Lett, 2015, 363(1): 17-27.
doi: 10.1016/j.canlet.2015.03.026
|
120 |
WANG J, WANG H, LIU A, et al. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer[J]. Oncotarget, 2015, 6(23): 19456-19468.
doi: 10.18632/oncotarget.3318
|
121 |
LIU L, WANG Y, BAI R, et al. MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation[J/OL]. Oncogenesis, 2016, 5(5): e224.
doi: 10.1038/oncsis.2016.35
|
122 |
TAKAHASHI K, YAN I K, HAGA H, et al. Modulation of hypoxia-signaling pathways by extracellular linc-RoR[J]. J Cell Sci, 2014, 127(7): 1585-1594.
doi: 10.1242/jcs.141069
|
123 |
CHEN Z, ZENG H, GUO Y, et al. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc[J]. J Exp Clin Cancer Res, 2010, 29(1): 151.
doi: 10.1186/1756-9966-29-151
|
124 |
YAMAMURA S, SAINI S, MAJID S, et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells[J/OL]. PLoS One, 2012, 7(1): e29722.
doi: 10.1371/journal.pone.0029722
|
125 |
TSAI W C, HSU S D, HSU C S, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis[J]. J Clin Invest, 2012, 122(8): 2884-2897.
doi: 10.1172/jci63455
|
126 |
HE J, ZHAO K, ZHENG L, et al. Upregulation of microRNA-122 by farnesoid X receptor suppresses the growth of hepatocellular carcinoma cells[J]. Mol Cancer, 2015, 14(1): 163.
doi: 10.1186/s12943-015-0427-9
|
127 |
ESAU C, DAVIS S, MURRAY S F, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab, 2006, 3(2): 87-98.
doi: 10.1016/j.cmet.2006.01.005
|
128 |
CUI M, WANG Y, SUN B, et al. MiR-205 modulatesabnormal lipid metabolism of hepatoma cells via targeting acyl-CoA synthetase long-chain family member 1 (ACSL1) mRNA[J]. Biochem BioPhys Res Commun, 2014, 444(2): 270-275.
doi: 10.1016/j.bbrc.2014.01.051
|
129 |
NOGUCHI S, IWASAKI J, KUMAZAKI M, et al. Chemically modified synthetic microRNA-205 inhibits the growth of melanoma cells in vitro and in vivo[J] . Mol Ther, 2013, 21(6): 1204-1211.
doi: 10.1038/mt.2013.70
|
130 |
PHANG J M, LIU W, HANCOCK C N, et al. Proline metabolism and cancer[J]. Curr Opin Clin Nutrition Metabolic Care, 2015, 18(1): 71-77.
doi: 10.1097/mco.0000000000000121
|
131 |
GAO P, TCHERNYSHYOV I, CHANG T C, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature, 2009, 458(7239): 762-765.
doi: 10.1038/nature07823
|
132 |
LIU W, LE A, HANCOCK C, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC[J]. Proc Natl Acad Sci USA, 2012, 109(23): 8983-8988.
doi: 10.1073/pnas.1203244109
|
133 |
JECK W R, SHARPLESS N E . Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5): 453-461.
doi: 10.1038/nbt.2890
|
134 |
HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388.
doi: 10.1038/nature11993
|
135 |
STOLL L, SOBEL J, RODRIGUEZ-TREJO A, et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions[J]. Mol Metab, 2018, 69-83.
doi: 10.1016/j.molmet.2018.01.010
|
136 |
ZHENG Q, BAO C, GUO W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7(1): 11215.
doi: 10.1038/ncomms11215
|
137 |
LIANG G, LIU Z, TAN L, et al. HIF1α-associatedcircDENND4C promotes proliferation of breast cancer cells in hypoxic environment[J]. Anticancer Res, 2017, 37(8): 4337-4343.
doi: 10.21873/anticanres.11827
|
138 |
DANG R Y, LIU F L, LI Y . Circular RNA hsa_circ_ 0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis[J]. Biochem BioPhys Res Commun, 2017, 490(2): 104-110.
doi: 10.1016/j.bbrc.2017.05.164
|
139 |
XIE H, REN X, XIN S, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer[J]. Oncotarget, 2016, 7(18): 26680-26691.
doi: 10.18632/oncotarget.8589
|
140 |
YU C Y, LI T C, WU Y Y, et al. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency[J]. Nat Commun, 2017, 8(1): 1149.
doi: 10.1038/s41467-017-01216-w
|
141 |
ULITSKY I, BARTEL D P . lincRNAs:genomics,evolution,and mechanisms[J]. Cell, 2013, 154(1): 26-46.
doi: 10.1016/j.cell.2013.06.020
|
142 |
ZOU Z W, MA C, MEDORO L, et al. LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation,reprograming cell glucose metabolism and inducing side-population stem-like cancer cells[J]. Oncotarget, 2016, 7(38): 61741-61754.
doi: 10.18632/oncotarget.11437
|
143 |
WEI S, FAN Q, YANG L, et al. Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling[J]. Oncology Rep, 2017, 38(3): 1902-1908.
doi: 10.3892/or.2017.5840
|
144 |
ZHAO Y, LIU Y, LIN L, et al. The lncRNA MACC1- AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1[J]. Mol Cancer, 2018, 17(1): 69.
doi: 10.1186/s12943-018-0820-2
|
145 |
LI H, LI J, JIA S, et al. miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer[J]. Oncotarget, 2015, 6(31): 31958-31984.
doi: 10.18632/oncotarget.5579
|
146 |
MA M Z, ZHANG Y, WENG M Z, et al. Long noncoding RNA GCASPC,a target of miR-17-3p,negatively regulates pyruvate carboxylase–dependent cell proliferation in gallbladder cancer[J]. Cancer Res, 2016, 76(18): 5361-5371.
doi: 10.1158/0008-5472.Can-15-3047
|
147 |
NGUYEN H B, BABCOCK J T, WELLS C D, et al. LKB1 tumor suppressor regulates AMP kinase/mTOR-independent cell growth and proliferation via the phosphorylation of Yap[J]. Oncogene, 2013, 32(35): 4100-4109.
doi: 10.1038/onc.2012.431
|
148 |
CHEN Z, LI J L, LIN S, et al. cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth[J]. J Clin Invest, 2016, 126(6): 2267-2279.
doi: 10.1172/jci85250
|
149 |
LIU X, XIAO Z D, HAN L, et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress[J]. Nat Cell Biol, 2016, 18(4): 431-442.
doi: 10.1038/ncb3328
|
150 |
YANG F, ZHANG H, MEI Y, et al. Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect[J]. Mol Cell, 2014, 53(1): 88-100.
doi: 10.1016/j.molcel.2013.11.004
|
151 |
LUO F, LIU X, LING M, et al. The lncRNA MALAT1,acting through HIF-1α stabilization,enhances arsenite-induced glycolysis in human hepatic L-02 cells[J]. BioChim Biophysica Acta (BBA) - Mol Basis Dis, 2016, 1862(9): 1685-1695.
doi: 10.1016/j.bbadis.2016.06.004
|
152 |
WU W, HU Q, NIE E, et al. Hypoxia induces H19 expression through direct and indirect Hif-1α activity,promoting oncogenic effects in glioblastoma[J]. Sci Rep, 2017, 7(1): 45029.
doi: 10.1038/srep45029
|
153 |
LIN A, LI C, XING Z, et al. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer[J]. Nat Cell Biol, 2016, 18(2): 213-224.
doi: 10.1038/ncb3295
|
154 |
MADDOCKS O D K, VOUSDEN K H . Metabolic regulation by p53[J]. J Mol Med, 2011, 89(3): 237-245.
doi: 10.1007/s00109-011-0735-5
|
155 |
WU M, AN J, ZHENG Q, et al. Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR[J]. Oncotarget, 2016, 7(41): 66525-66539.
doi: 10.18632/oncotarget.9089
|
156 |
ZHOU Y, ZHONG Y, WANG Y, et al. Activation of p53 by MEG3 non-coding RNA[J]. J Biol Chem, 2007, 282(34): 24731-24742.
doi: 10.1074/jbc.M702029200
|
157 |
MAHMOUDI S, HENRIKSSON S, CORCORAN M, et al. Wrap53,a natural p53 antisense transcript required for p53 induction upon DNA damage[J]. Mol Cell, 2009, 33(4): 462-471.
doi: 10.1016/j.molcel.2009.01.028
|
158 |
TRIPATHI V, SHEN Z, CHAKRABORTY A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB[J/OL]. PLoS Genet, 2013, 9(3): e1003368.
doi: 10.1371/journal.pgen.1003368
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|