Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (2): 245-260    DOI: 10.3724/zdxbyxb-2021-0048
综述     
原纤毛及其在肿瘤发生发展中的作用
毛红美1,2(),孙毅1,2,*()
1.浙江大学医学院附属第二医院肿瘤研究所,浙江 杭州 310009
2.浙江大学转化医学研究院,浙江 杭州 310029
Primary cilium and its role in tumorigenesis
MAO Hongmei1,2(),SUN Yi1,2,*()
1. Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
2. Department of Translation Medicine, Zhejiang University, Hangzhou 310029, China
 全文: PDF(4034 KB)   HTML( 12 )
摘要:

原纤毛是一个突出于大多数真核细胞表面的感觉细胞器,其重要功能是接收和转导细胞内外各种关键信号,从而在机体的正常发育和稳态中发挥不可替代的作用。原纤毛结构和/或功能异常会导致一系列包括肿瘤在内的疾病。原纤毛与细胞周期具有双向调控作用,可能可以作为一个细胞周期的检查点来抑制肿瘤的发生和发展;与细胞自噬相互调控,可能通过调控自噬活性从而在肿瘤的进展中发挥作用;与 Shh、Wnt、Notch 和血小板源性生长因子受体(PDGFR)等多个致癌性信号通路相互调控,参与肿瘤的发生发展。本综述总结了纤毛在肿瘤发生发展中的作用以及该领域所面临的挑战。

关键词: 原纤毛细胞周期纤毛相关信号通路自噬肿瘤发生    
Abstract:

The primary cilium, a sensory organelle that protrudes from the surface of most eukaryotic cells, receives and transduces various critical signals that are essential for normal development and homeostasis. Structural or functional disruption of primary cilia causes a number of human diseases, including cancer. Primary cilia has cross talks with cell cycle and it may act as a cell cycle checkpoint to suppress cancer development. Moreover, primary cilia has cross-regulation with autophagy, which may affect tumor progression. We then discuss the association of the primary cilia with several oncogenic signaling pathways, including Shh, Wnt, Notch and platelet-derived growth factor receptor (PDGFR). Since these signaling pathways are often over-activated in many types of human cancers, primary cilia are likely to play a role in the tumorigenesis by modulating these pathways. Finally, we summarize current progress on the role of cilia during tumorigenesis and the challenges that the cilia-cancer field faces.

Key words: Primary cilia    Cell cycle    Cilia-related signaling pathways    Autophagy    Tumorigenesis
收稿日期: 2020-10-29 出版日期: 2021-06-18
基金资助: 国家重点研发计划(2016YFA0501800)
通讯作者: 孙毅     E-mail: mhm@zju.edu.cn;yisun@zju.edu.cn
作者简介: 毛红美,博士后,主要从事原纤毛形成机制的研究;E-mail:mhm@zju.edu.cn;https://orcid.org/0000-0002-5565-5587
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
毛红美
孙毅

引用本文:

毛红美,孙毅. 原纤毛及其在肿瘤发生发展中的作用[J]. 浙江大学学报(医学版), 2021, 50(2): 245-260.

MAO Hongmei,SUN Yi. Primary cilium and its role in tumorigenesis. J Zhejiang Univ (Med Sci), 2021, 50(2): 245-260.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0048        http://www.zjujournals.com/med/CN/Y2021/V50/I2/245

图 1  原纤毛的基本结构及形成原纤毛由基体、轴丝和纤毛膜组成,轴丝的基本结构为九组二联微管(9+0).IFTA:鞭毛内运输复合物 A;IFTB:鞭毛内运输复合物 B.
图 2  原纤毛与细胞周期的双向调控细胞周期相关蛋白调控原纤毛的形成和解聚.细胞周期相关激酶促进原纤毛的形成.极样激酶 1 通过正向调控极光激酶 A、磷酸化HDAC6 和磷酸化 KIF2A 促进原纤毛的解聚;极光激酶 A 通过磷酸化HDAC6 促进原纤毛的解聚;NEK2 通过磷酸化 KIF24 促进原纤毛的解聚.HDAC:组蛋白脱乙酰酶;KIF:驱动蛋白家族;NEK:NIMA 相关激酶.
图 3  自噬与原纤毛的相互调控原纤毛可通过上调 Shh 信号通路的活性或下调 mTOR 信号通路的活性促进自噬的发生;而自噬可通过降解 IFT20 抑制原纤毛的形成或通过降解 OFD1 促进原纤毛的形成.mTOR:哺乳动物雷帕霉素靶蛋白;IFT20:鞭毛内运输蛋白 20.
图 4  定位在原纤毛的信号通路A:原纤毛调控 Shh 信号通路.当无 Shh 配体时,Shh 信号通路处于失活状态;当 Shh 配体存在时,Smo 蛋白使全长的 Gli 不被降解,随后全长 Gli、Sufu 和驱动蛋白家族 7(KIF7)形成复合物并朝原纤毛的顶端移动,一旦到达纤毛顶端,Gli 分离并被修饰成 GliA.B:原纤毛调控 Wnt 信号通路. 原纤毛调控平面细胞极性(PCP)的活性,但具体分子机制未明确.经典 Wnt 信号通路中,当 Wnt 与 FZD 及低密度脂蛋白受体相关蛋白 5/6(LRP5/6)结合时,散乱蛋白(DVL)被激活且将 APC/酪蛋白激酶 1(CK1)复合物招募至细胞膜,抑制β-Catenin 降解使得细胞质以及细胞核的β-Catenin 增多,进而转录激活下游靶基因;而无 Wnt 配体时,β-Catenin 被招募至由腺瘤性息肉病蛋白(APC)和 Axin 组成的复合物上,被 CK1 和糖原合成激酶(GSK)磷酸化,最终在蛋白酶体被降解.C:原纤毛调控 Notch 信号通路.Notch 受体和 Presenilin-2 定位在纤毛上,原纤毛可以正向调控 Notch 信号通路的活性,被水解切割的 Notch 释放出其细胞内结构域 NICD,后者从细胞膜转移至细胞核转录激活下游靶基因.D:原纤毛调控血小板源性生长因子受体(PDGFR)-α信号通路.PDGFR-α定位于某些细胞的原纤毛上,原纤毛可以通过 MEK-胞外信号调节激酶(ERK)及磷脂酰肌醇 3 激酶(PI3K)-蛋白激酶 B(AKT)正向调控血小板源性生长因子(PDGF)信号通路的活性.
1 SINGLAV, REITERJ F. The primary cilium as the cell’s antenna: signaling at a sensory organelle[J]Science, 2006, 313( 5787): 629-633.
doi: 10.1126/science.1124534
2 WHEATLEYD N, WANGA M, STRUGNELLG E. Expression of primary cilia in mammalian cells[J]Cell Biol Int, 1996, 20( 1): 73-81.
doi: 10.1006/cbir.1996.0011
3 WHEATLEYD N. Primary cilia in normal and pathological tissues[J]Pathobiology, 1995, 63( 4): 222-238.
doi: 10.1159/000163955
4 BERBARIN F, O’CONNORA K, HAYCRAFTC J, et al.The primary cilium as a complex signaling center[J]Curr Biol, 2009, 19( 13): R526-R535.
doi: 10.1016/j.cub.2009.05.025
5 ROHATGIR, SNELLW J. The ciliary membrane[J]Curr Opin Cell Biol, 2010, 22( 4): 541-546.
doi: 10.1016/j.ceb.2010.03.010
6 SZYMANSKAK, JOHNSONC A. The transition zone: an essential functional compartment of cilia[J]Cilia, 2012, 1( 1): 10.
doi: 10.1186/2046-2530-1-10
7 JANAS C, MENDON?AS, MACHADOP, et al.Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity[J]Nat Cell Biol, 2018, 20( 8): 928-941.
doi: 10.1038/s41556-018-0132-1
8 PAZOURG J, WITMANG B. The vertebrate primary cilium is a sensory organelle[J]Curr Opin Cell Biol, 2003, 15( 1): 105-110.
doi: 10.1016/s0955-0674(02)00012-1
9 NISHIMURAY, KASAHARAK, SHIROMIZUT, et al.Primary cilia as signaling hubs in health and disease[J]Adv Sci, 2019, 6( 1): 1801138.
doi: 10.1002/advs.201801138
10 WONGS Y, SEOLA D, SOP L, et al.Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis[J]Nat Med, 2009, 15( 9): 1055-1061.
doi: 10.1038/nm.2011
11 HANY G, KIMH J, DLUGOSZA A, et al.Dual and opposing roles of primary cilia in medulloblastoma development[J]Nat Med, 2009, 15( 9): 1062-1065.
doi: 10.1038/nm.2020
12 PANJ, SNELLW. The primary cilium: keeper of the key to cell division[J]Cell, 2007, 129( 7): 1255-1257.
doi: 10.1016/j.cell.2007.06.018
13 PLOTNIKOVAO V, GOLEMISE A, PUGACHEVAE N. Cell cycle-dependent ciliogenesis and cancer: figure 1[J]Cancer Res, 2008, 68( 7): 2058-2061.
doi: 10.1158/0008-5472.CAN-07-5838
14 CAOM, ZHONGQ. Cilia in autophagy and cancer[J]Cilia, 2015, 5( 1): 4.
doi: 10.1186/s13630-016-0027-3
15 MORLEOM, FRANCOB. The autophagy-cilia axis: an intricate relationship[J]Cells, 2019, 8( 8): 905.
doi: 10.3390/cells8080905
16 PAMPLIEGAO, CUERVOA M. Autophagy and primary cilia: dual interplay[J]Curr Opin Cell Biol, 2016, 1-7.
doi: 10.1016/j.ceb.2016.01.008
17 GIGANTEE D, CASPARYT. Signaling in the primary cilium through the lens of the Hedgehog pathway[J/OL]WIREs Dev Biol, 2020, 9( 6): e377.
doi: 10.1002/wdev.377
18 WALLINGFORDJ B, MITCHELLB. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia[J]Genes Dev, 2011, 25( 3): 201-213.
doi: 10.1101/gad.2008011
19 EZRATTYE J, STOKESN, CHAIS, et al.A role for the primary cilium in Notch signaling and epidermal differentiation during skin development[J]Cell, 2011, 145( 7): 1129-1141.
doi: 10.1016/j.cell.2011.05.030
20 KASAHARAK, AOKIH, KIYONOT, et al.EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase[J]Nat Commun, 2018, 9( 1): 758.
doi: 10.1038/s41467-018-03117-y
21 PALAR, ALOMARIN, NAULIS M. Primary cilium-dependent signaling mechanisms[J]IJMS, 2017, 18( 11): 2272.
doi: 10.3390/ijms18112272
22 CLEMENTC A, AJBROK D, KOEFOEDK, et al.TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium[J]Cell Rep, 2013, 3( 6): 1806-1814.
doi: 10.1016/j.celrep.2013.05.020
23 SCHNEIDERL, CLEMENTC A, TEILMANNS C, et al.PDGFRαα signaling is regulated through the primary cilium in fibroblasts[J]Curr Biol, 2005, 15( 20): 1861-1866.
doi: 10.1016/j.cub.2005.09.012
24 GRADILONES A, RADTKEB N, BOGERTP S, et al.HDAC6 inhibition restores ciliary expression and decreases tumor growth[J]Cancer Res, 2013, 73( 7): 2259-2270.
doi: 10.1158/0008-5472.CAN-12-2938
25 YUANK, FROLOVAN, XIEY, et al.Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues[J]J Histochem Cytochem, 2010, 58( 10): 857-870.
doi: 10.1369/jhc.2010.955856
26 SCHRAMLP, FREWI J, THOMAC R, et al.Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia[J]Mod Pathol, 2009, 22( 1): 31-36.
doi: 10.1038/modpathol.2008.132
27 BASTENS G, WILLEKERSS, VERMAATJ S, et al.Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue[J]Cilia, 2013, 2( 1): 2.
doi: 10.1186/2046-2530-2-2
28 SEELEYE S, CARRIèREC, GOETZET, et al.Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia[J]Cancer Res, 2009, 69( 2): 422-430.
doi: 10.1158/0008-5472.CAN-08-1290
29 EGEBERGD L, LETHANM, MANGUSOR, et al.Primary cilia and aberrant cell signaling in epithelial ovarian cancer[J]Cilia, 2012, 1( 1): 15.
doi: 10.1186/2046-2530-1-15
30 ISHIKAWAH, MARSHALLW F. Ciliogenesis: building the cell’s antenna[J]Nat Rev Mol Cell Biol, 2011, 12( 4): 222-234.
doi: 10.1038/nrm3085
31 SANTOSN, REITERJ F. Building it up and taking it down: the regulation of vertebrate ciliogenesis[J]Dev Dyn, 2008, 237( 8): 1972-1981.
doi: 10.1002/dvdy.21540
32 HAGIWARA H, OHWADA N, TAKATA K. Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium[J]. Int Rev Cytol, 2004, 234: 101-141
33 ANDERSONR G W, BRENNERR M. The formation of basal bodies (centrioles) in the Rhesus monkey oviduct[J]J Cell Biol, 1971, 50( 1): 10-34.
doi: 10.1083/jcb.50.1.10
34 NIGGE A, STEARNST. The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries[J]Nat Cell Biol, 2011, 13( 10): 1154-1160.
doi: 10.1038/ncb2345
35 TUCKERR W, PARDEEA B, FUJIWARAK. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells[J]Cell, 1979, 17( 3): 527-535.
doi: 10.1016/0092-8674(79)90261-7
36 RIEDERC L, JENSENC G, JENSENL C W. The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line[J]J Ultrastructure Res, 1979, 68( 2): 173-185.
doi: 10.1016/s0022-5320(79)90152-7
37 BENMERAHA. The ciliary pocket[J]Curr Opin Cell Biol, 2013, 25( 1): 78-84.
doi: 10.1016/j.ceb.2012.10.011
38 BENMERAHA. La poche ciliaire : fruit des liaisons du centrosome avec le trafic vésiculaire[J]médecine/sciences, 2014, 30( 11): 962-967.
doi: 10.1051/medsci/20143011009
39 HUQ, NELSONW J. Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment[J]Cytoskeleton, 2011, 68( 6): 313-324.
doi: 10.1002/cm.20514
40 WRENK N, CRAFTJ M, TRITSCHLERD, et al.A differential cargo-loading model of ciliary length regulation by IFT[J]Curr Biol, 2013, 23( 24): 2463-2471.
doi: 10.1016/j.cub.2013.10.044
41 TASCHNERM, BHOGARAJUS, LORENTZENE. Architecture and function of IFT complex proteins in ciliogenesis[J]Differentiation, 2012, 83( 2): S12-S22.
doi: 10.1016/j.diff.2011.11.001
42 AVASTHIP, MARSHALLW F. Stages of ciliogenesis and regulation of ciliary length[J]Differentiation, 2012, 83( 2): S30-S42.
doi: 10.1016/j.diff.2011.11.015
43 GARCIA ⅢG, RALEIGHD R, REITERJ F. How the ciliary membrane is organized inside-out to communicate outside-in[J]Curr Biol, 2018, 28( 8): R421-R434.
doi: 10.1016/j.cub.2018.03.010
44 AVIDOR-REISST, LEROUXM R. Shared and distinct mechanisms of compartmentalized and cytosolic ciliogenesis[J]Curr Biol, 2015, 25( 23): R1143-R1150.
doi: 10.1016/j.cub.2015.11.001
45 NAKAYAMAK, KATOHY. Architecture of the IFT ciliary trafficking machinery and interplay between its components[J]Critical Rev Biochem Mol Biol, 2020, 55( 2): 179-196.
doi: 10.1080/10409238.2020.1768206
46 MARSHALLW F, QINH, RODRIGO BRENNIM, et al.Flagellar length control system: testing a simple model based on intraflagellar transport and turnover[J]MBoC, 2005, 16( 1): 270-278.
doi: 10.1091/mbc.e04-07-0586
47 SEIXASC, CHOIS Y, POLGARN, et al.Arl13b and the exocyst interact synergistically in ciliogenesis[J]MBoC, 2016, 27( 2): 308-320.
doi: 10.1091/mbc.E15-02-0061
48 LARKINSC E, AVILESG D G, EASTM P, et al.Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins[J]MBoC, 2011, 22( 23): 4694-4703.
doi: 10.1091/mbc.E10-12-0994
49 CASALOUC, FAUSTINOA, SILVAF, et al.Arl13b regulates breast cancer cell migration and invasion by controlling integrin-mediated signaling[J]Cancers, 2019, 11( 10): 1461.
doi: 10.3390/cancers11101461
50 GADADHARS, DADIH, BODAKUNTLAS, et al.Tubulin glycylation controls primary cilia length[J]J Cell Biol, 2017, 216( 9): 2701-2713.
doi: 10.1083/jcb.201612050
51 HOSSAIND, TSANGW Y. The role of ubiquitination in the regulation of primary cilia assembly and disassembly[J]Seminars Cell Dev Biol, 2019, 145-152.
doi: 10.1016/j.semcdb.2018.09.005
52 MASSAF, TAMMAROR, PRADOM A, et al.The deubiquitinating enzyme Usp14 controls ciliogenesis and Hedgehog signaling[J]Human Mol Genets, 2019, 28( 5): 764-777.
doi: 10.1093/hmg/ddy380
53 WLOGAD, JOACHIMIAKE, LOUKAP, et al.Posttranslational modifications of tubulin and cilia[J]Cold Spring Harb Perspect Biol, 2017, 9( 6): a028159.
doi: 10.1101/cshperspect.a028159
54 PUGACHEVAE N, JABLONSKIS A, HARTMANT R, et al.HEF1-dependent Aurora A activation induces disassembly of the primary cilium[J]Cell, 2007, 129( 7): 1351-1363.
doi: 10.1016/j.cell.2007.04.035
55 SáNCHEZ DE DIEGOA, ALONSO GUERREROA, MARTíNEZ-AC, et al.Dido3-dependent HDAC6 targeting controls cilium size[J]Nat Commun, 2014, 5( 1): 3500.
doi: 10.1038/ncomms4500
56 FRIEDMANND R, AGUILARA, FANJ, et al.Structure of the -tubulin acetyltransferase, TAT1, and implications for tubulin-specific acetylation[J]Proc Natl Acad Sci U S A, 2012, 109( 48): 19655-19660.
doi: 10.1073/pnas.1209357109
57 SHIDAT, CUEVAJ G, XUZ, et al.The major-tubulin K40 acetyltransferase TAT1 promotes rapid ciliogenesis and efficient mechanosensation[J]Proc Natl Acad Sci U S A, 2010, 107( 50): 21517-21522.
doi: 10.1073/pnas.1013728107
58 LEEC C, CHENGY C, CHANGC Y, et al.Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption[J]Sci Rep, 2018, 8( 1): 17477.
doi: 10.1038/s41598-018-35392-6
59 ZHUY, ZHANGC, GUC, et al.Function of deubiquitinating enzyme USP14 as oncogene in different types of cancer[J]Cell Physiol Biochem, 2016, 38( 3): 993-1002.
doi: 10.1159/000443051
60 YANGY, RANJ, LIUM, et al.CYLD mediates ciliogenesis in multiple organs by deubiquitinating Cep70 and inactivating HDAC6[J]Cell Res, 2014, 24( 11): 1342-1353.
doi: 10.1038/cr.2014.136
61 IZAWAI, GOTOH, KASAHARAK, et al.Current topics of functional links between primary cilia and cell cycle[J]Cilia, 2015, 4( 1): 12.
doi: 10.1186/s13630-015-0021-1
62 PLOTNIKOVA O V, PUGACHEVA E N, GOLEMIS E A. Primary cilia and the cell cycle[J]. Methods Cell Biol, 2009, 94: 137-160
63 FABBRIL, BOSTF, MAZUREN M. Primary cilium in cancer hallmarks[J]IJMS, 2019, 20( 6): 1336.
doi: 10.3390/ijms20061336
64 COLICINOE G, HEHNLYH. Regulating a key mitotic regulator, polo‐like kinase 1 (PLK1)[J]Cytoskeleton, 2018, 75( 11): 481-494.
doi: 10.1002/cm.21504
65 MIYAMOTOT, HOSOBAK, OCHIAIH, et al.The microtubule-depolymerizing activity of a mitotic kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation[J]Cell Rep, 2015, 10( 5): 664-673.
doi: 10.1016/j.celrep.2015.01.003
66 LIUZ, SUNQ, WANGX. PLK1, a potential target for cancer therapy[J]Translational Oncology, 2017, 10( 1): 22-32.
doi: 10.1016/j.tranon.2016.10.003
67 DE CáRCERG, VENKATESWARANS V, SALGUEIROL, et al.Plk1 overexpression induces chromosomal instability and suppresses tumor development[J]Nat Commun, 2018, 9( 1): 3012.
doi: 10.1038/s41467-018-05429-5
68 FUJ, BIANM, JIANGQ, et al.Roles of Aurora kinases in mitosis and tumorigenesis[J]Mol Cancer Res, 2007, 5( 1): 1-10.
doi: 10.1158/1541-7786.MCR-06-0208
69 D’ASSOROA B, HADDADT, GALANISE. Aurora-A kinase as a promising therapeutic target in cancer[J]Front Oncol, 2016, 295.
doi: 10.3389/fonc.2015.00295
70 XIANGW, GUOF, CHENGW, et al.HDAC6 inhibition suppresses chondrosarcoma by restoring the expression of primary cilia[J]Oncology Rep, 2017, 38( 1): 229-236.
doi: 10.3892/or.2017.5694
71 KIMS, LEEK, CHOIJ H, et al.Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle[J]Nat Commun, 2015, 6( 1): 8087.
doi: 10.1038/ncomms9087
72 FANGY, ZHANGX. Targeting NEK2 as a promising therapeutic approach for cancer treatment[J]Cell Cycle, 2016, 15( 7): 895-907.
doi: 10.1080/15384101.2016.1152430
73 TIANY E, WANH, TANG. Cell cycle-related kinase in carcinogenesis[J]Oncology Lett, 2012, 4( 4): 601-606.
doi: 10.3892/ol.2012.828
74 SNOUFFERA, BROWND, LEEH, et al.Cell cycle-related kinase (CCRK) regulates ciliogenesis and Hedgehog signaling in mice[J/OL]PLoS Genet, 2017, 13( 8): e1006912.
doi: 10.1371/journal.pgen.1006912
75 MOKM T, ZHOUJ, TANGW, et al.CCRK is a novel signalling hub exploitable in cancer immunotherapy[J]Pharmacol Therapeutics, 2018, 138-151.
doi: 10.1016/j.pharmthera.2018.01.008
76 KIMS, ZAGHLOULN A, BUBENSHCHIKOVAE, et al.Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry[J]Nat Cell Biol, 2011, 13( 4): 351-360.
doi: 10.1038/ncb2183
77 HSIAOC J, CHANGC H, IBRAHIMR B, et al.Gli2 modulates cell cycle re-entry through autophagy-mediated regulation of the length of primary cilia[J]J Cell Sci, 2018, 131( 24): jcs221218.
doi: 10.1242/jcs.221218
78 MIZUSHIMAN. The pleiotropic role of autophagy: from protein metabolism to bactericide[J]Cell Death Differ, 2005, 12( S2): 1535-1541.
doi: 10.1038/sj.cdd.4401728
79 WHITEE, MEHNERTJ M, CHANC S. Autophagy, metabolism, and cancer[J]Clin Cancer Res, 2015, 21( 22): 5037-5046.
doi: 10.1158/1078-0432.CCR-15-0490
80 MAZUREN M, POUYSSéGURJ. Hypoxia-induced autophagy: cell death or cell survival?[J]Curr Opin Cell Biol, 2010, 22( 2): 177-180.
doi: 10.1016/j.ceb.2009.11.015
81 WHITEE. The role for autophagy in cancer[J]J Clin Invest, 2015, 125( 1): 42-46.
doi: 10.1172/JCI73941
82 KOJ Y, LEEE J, PARKJ H. Interplay between primary cilia and autophagy and its controversial roles in cancer[J]Biomolecules Therapeutics, 2019, 27( 4): 337-341.
doi: 10.4062/biomolther.2019.056
83 PAMPLIEGAO, ORHONI, PATELB, et al.Functional interaction between autophagy and ciliogenesis[J]Nature, 2013, 502( 7470): 194-200.
doi: 10.1038/nature12639
84 WANGS, LIVINGSTONM J, SUY, et al.Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways[J]Autophagy, 2015, 11( 4): 607-616.
doi: 10.1080/15548627.2015.1023983
85 TANGZ, LINM G, STOWET R, et al.Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites[J]Nature, 2013, 502( 7470): 254-257.
doi: 10.1038/nature12606
86 MAHARJANY, LEEJ N, KWAKS A, et al.Autophagy alteration prevents primary cilium disassembly in RPE1 cells[J]Biochem BioPhys Res Commun, 2018, 500( 2): 242-248.
doi: 10.1016/j.bbrc.2018.04.051
87 MENZLI, LEBEAUL, PANDEYR, et al.Loss of primary cilia occurs early in breast cancer development[J]Cilia, 2014, 3( 1): 7.
doi: 10.1186/2046-2530-3-7
88 NOBUTANIK, SHIMONOY, YOSHIDAM, et al.Absence of primary cilia in cell cycle-arrested human breast cancer cells[J]Genes Cells, 2014, 19( 2): 141-152.
doi: 10.1111/gtc.12122
89 KOBAYASHIT, ITOHH. Loss of a primary cilium in PDAC[J]Cell Cycle, 2017, 16( 9): 817-818.
doi: 10.1080/15384101.2017.1304738
90 WANG Z L, DENG Q, CHONG T, et al. Autophagy suppresses the proliferation of renal carcinoma cell[J]. Eur Rev Med Pharmacol Sci, 2018,22(2): 343-350
91 ZINGGD, DEBBACHEJ, PE?A-HERNáNDEZR, et al.EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation[J]Cancer Cell, 2018, 34( 1): 69-84.e14.
doi: 10.1016/j.ccell.2018.06.001
92 LEEJ, YIS, KANGY E, et al.Defective ciliogenesis in thyroid hürthle cell tumors is associated with increased autophagy[J]Oncotarget, 2016, 7( 48): 79117-79130.
doi: 10.18632/oncotarget.12997
93 VARJOSALOM, TAIPALEJ. Hedgehog: functions and mechanisms[J]Genes Dev, 2008, 22( 18): 2454-2472.
doi: 10.1101/gad.1693608
94 LEH, KLEINERMANR, LERMANO Z, et al.Hedgehog signaling is essential for normal wound healing[J]Wound Repair Regeneration, 2008, 16( 6): 768-773.
doi: 10.1111/j.1524-475X.2008.00430.x
95 LOWRYW E, RICHTERL, YACHECHKOR, et al.Generation of human induced pluripotent stem cells from dermal fibroblasts[J]Proc Natl Acad Sci U S A, 2008, 105( 8): 2883-2888.
doi: 10.1073/pnas.0711983105
96 KARHADKARS S, STEVEN BOVAG, ABDALLAHN, et al.Hedgehog signalling in prostate regeneration, neoplasia and metastasis[J]Nature, 2004, 431( 7009): 707-712.
doi: 10.1038/nature02962
97 WATKINSD N, BERMAND M, BURKHOLDERS G, et al.Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer[J]Nature, 2003, 422( 6929): 313-317.
doi: 10.1038/nature01493
98 BAILEYJ M, MOHRA M, HOLLINGSWORTHM A. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer[J]Oncogene, 2009, 28( 40): 3513-3525.
doi: 10.1038/onc.2009.220
99 YANG L, WANG L S, CHEN X L, et al. Hedgehog signaling activation in the development of squamous cell carcinoma and adenocarcinoma of esophagus[J]. Int J Biochem Mol Biol, 2012, 3(1): 46-57
100 SHENGT, LIC, ZHANGX, et al.Activation of the hedgehog pathway in advanced prostate cancer.[J]Mol Cancer, 2004, 3( 1): 29.
doi: 10.1186/1476-4598-3-29
101 SKODAA M, SIMOVICD, KARINV, et al.The role of the Hedgehog signaling pathway in cancer: a comprehensive review[J]Bosn J Basic Med Sci, 2018, 18( 1): 8-20.
doi: 10.17305/bjbms.2018.2756
102 RIMKUST K, CARPENTERR L, QASEMS, et al.Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors[J]Cancers, 2016, 8( 2): 22.
doi: 10.3390/cancers8020022
103 GOETZ S C, OCBINA P J, ANDERSON K V. The primary cilium as a Hedgehog signal transduction machine[J]. Methods Cell Biol, 2009, 94: 199-222
104 GOETZS C, ANDERSONK V. The primary cilium: a signalling centre during vertebrate development[J]Nat Rev Genet, 2010, 11( 5): 331-344.
doi: 10.1038/nrg2774
105 RUBINL L, DE SAUVAGEF J. Targeting the Hedgehog pathway in cancer[J]Nat Rev Drug Discov, 2006, 5( 12): 1026-1033.
doi: 10.1038/nrd2086
106 MICHAUDE J, YODERB K. The primary cilium in cell signaling and cancer: figure 1[J]Cancer Res, 2006, 66( 13): 6463-6467.
doi: 10.1158/0008-5472.CAN-06-0462
107 LIUH, KISELEVAA A, GOLEMISE A. Ciliary signalling in cancer[J]Nat Rev Cancer, 2018, 18( 8): 511-524.
doi: 10.1038/s41568-018-0023-6
108 TUKACHINSKYH, LOPEZL V, SALICA. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes[J]J Cell Biol, 2010, 191( 2): 415-428.
doi: 10.1083/jcb.201004108
109 MéTHOT N, BASLER K. Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus[J]. Development, 2000, 127(18): 4001-4010
110 CHENM H, WILSONC W, LIY J, et al.Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved[J]Genes Dev, 2009, 23( 16): 1910-1928.
doi: 10.1101/gad.1794109
111 LIW, OHLMEYERJ T, LANEM E, et al.Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development[J]Cell, 1995, 80( 4): 553-562.
doi: 10.1016/0092-8674(95)90509-x
112 BARZIM, BERENGUERJ, MENENDEZA, et al.Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base[J]J Cell Sci, 2010, 123( 1): 62-69.
doi: 10.1242/jcs.060020
113 RUIZ I, ALTABAA. Hedgehog signaling and the Gli code in stem cells, cancer, and metastases[J]Sci Signal, 2011, 4( 200): pt9.
doi: 10.1126/scisignal.2002540
114 THEUNISSENJ W, DE SAUVAGEF J. Paracrine Hedgehog signaling in cancer[J]Cancer Res, 2009, 69( 15): 6007-6010.
doi: 10.1158/0008-5472.CAN-09-0756
115 CLEVERSH, NUSSER. Wnt/β-Catenin signaling and disease[J]Cell, 2012, 149( 6): 1192-1205.
doi: 10.1016/j.cell.2012.05.012
116 ALAMOUDK A, KUKURUZINSKAM A. Emerging insights into Wnt/β-catenin signaling in head and neck cancer[J]J Dent Res, 2018, 97( 6): 665-673.
doi: 10.1177/0022034518771923
117 DAVIDSONG, WUW, SHENJ, et al.Casein kinase 1 γ couples Wnt receptor activation to cytoplasmic signal transduction[J]Nature, 2005, 438( 7069): 867-872.
doi: 10.1038/nature04170
118 ZENGX, TAMAIK, DOBLEB, et al.A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation[J]Nature, 2005, 438( 7069): 873-877.
doi: 10.1038/nature04185
119 OHE C, KATSANISN. Context-dependent regulation of Wnt signaling through the primary cilium[J]JASN, 2013, 24( 1): 10-18.
doi: 10.1681/ASN.2012050526
120 BERGMANNC, FLIEGAUFM, BRüCHLEN O, et al.Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia[J]Am J Human Genets, 2008, 82( 4): 959-970.
doi: 10.1016/j.ajhg.2008.02.017
121 CORBITK C, SHYERA E, DOWDLEW E, et al.Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms[J]Nat Cell Biol, 2008, 10( 1): 70-76.
doi: 10.1038/ncb1670
122 HILDEBRANDTF, ATTANASIOM, OTTOE. Nephronophthisis: disease mechanisms of a ciliopathy[J]JASN, 2009, 20( 1): 23-35.
doi: 10.1681/ASN.2008050456
123 OCBINAP J R, TUSONM, ANDERSONK V. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo[J/OL]PLoS ONE, 2009, 4( 8): e6839.
doi: 10.1371/journal.pone.0006839
124 HUANGP, SCHIERA F. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia[J]Development, 2009, 136( 18): 3089-3098.
doi: 10.1242/dev.041343
125 JONESC, CHENP. Planar cell polarity signaling in vertebrates[J]BioEssays, 2007, 29( 2): 120-132.
doi: 10.1002/bies.20526
126 BUTLERM T, WALLINGFORDJ B. Planar cell polarity in development and disease[J]Nat Rev Mol Cell Biol, 2017, 18( 6): 375-388.
doi: 10.1038/nrm.2017.11
127 MAY-SIMERAH L, KELLEYM W. Cilia, Wnt signaling, and the cytoskeleton[J]Cilia, 2012, 1( 1): 7.
doi: 10.1186/2046-2530-1-7
128 HIGGINSM, OBAIDII, MCMORROWT. Primary cilia and their role in cancer (review)[J]Oncol Lett, 2019, 17( 3): 3041.
doi: 10.3892/ol.2019.9942
129 SIMONSM, GLOYJ, GANNERA, et al.Inversin, the gene product mutated in nephronophthisis type Ⅱ, functions as a molecular switch between Wnt signaling pathways[J]Nat Genet, 2005, 37( 5): 537-543.
doi: 10.1038/ng1552
130 MARTIN-OROZCOE, SANCHEZ-FERNANDEZA, ORTIZ-PARRAI, et al.WNT signaling in tumors: the way to evade drugs and immunity[J]Front Immunol, 2019, 2854.
doi: 10.3389/fimmu.2019.02854
131 ARTAVANISTSAKONASS. The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila[J]Trends Genets, 1988, 4( 4): 95-100.
doi: 10.1016/0168-9525(88)90096-0
132 LEONGK G, KARSANA. Recent insights into the role of Notch signaling in tumorigenesis[J]Blood, 2006, 107( 6): 2223-2233.
doi: 10.1182/blood-2005-08-3329
133 SOUTHA P, CHOR J, ASTERJ C. The double-edged sword of Notch signaling in cancer[J]Seminars Cell Dev Biol, 2012, 23( 4): 458-464.
doi: 10.1016/j.semcdb.2012.01.017
134 ASTERJ C, PEARW S, BLACKLOWS C. The varied roles of notch in cancer[J]Annu Rev Pathol Mech Dis, 2017, 12( 1): 245-275.
doi: 10.1146/annurev-pathol-052016-100127
135 BOLO?SV, GREGO-BESSAJ ?, DE LA POMPAJ ? L. Notch signaling in development and cancer[J]Endocrine Rev, 2007, 28( 3): 339-363.
doi: 10.1210/er.2006-0046
136 DEL AMO F F, SMITH D E, SWIATEK P J, et al. Expression pattern of Motch, a mouse homolog of Drosophila Notch, suggests an important role in early postimplantation mouse development[J]. Development, 1992, 115(3): 737-744
137 WEINMASTER G, ROBERTS V J, LEMKE G. Notch2: a second mammalian Notch gene[J]. Development, 1992, 116(4): 931-941
138 LARDELLIM, DAHLSTRANDJ, LENDAHLU. The novel Notch homologue mouse Notch 3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium[J]Mech Dev, 1994, 46( 2): 123-136.
doi: 10.1016/0925-4773(94)90081-7
139 UYTTENDAELE H, MARAZZI G, WU G, et al. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene[J]. Development, 1996, 122(7): 2251-2259
140 FEHONR G, KOOHP J, REBAYI, et al.Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila[J]Cell, 1990, 61( 3): 523-534.
doi: 10.1016/0092-8674(90)90534-l
141 WUL, ASTERJ C, BLACKLOWS C, et al.MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors[J]Nat Genet, 2000, 26( 4): 484-489.
doi: 10.1038/82644
142 EZRATTYE J, PASOLLIH A, FUCHSE. A presenilin-2–ARF4 trafficking axis modulates Notch signaling during epidermal differentiation[J]J Cell Biol, 2016, 214( 1): 89-101.
doi: 10.1083/jcb.201508082
143 GRISANTIL, REVENKOVAE, GORDONR E, et al.Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway[J]Development, 2016, 143( 12): 2160-2171.
doi: 10.1242/dev.132704
144 LIUZ, TUH, KANGY, et al.Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish[J]Nat Commun, 2019, 10( 1): 1839.
doi: 10.1038/s41467-019-09403-7
145 MAILLARDI, PEARW S. Notch and cancer: best to avoid the ups and downs[J]Cancer Cell, 2003, 3( 3): 203-205.
doi: 10.1016/s1535-6108(03)00052-7
146 CHANS M, WENGA P, TIBSHIRANIR, et al.Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia[J]Blood, 2007, 110( 1): 278-286.
doi: 10.1182/blood-2006-08-039883
147 PALOMEROT, SULISM L, CORTINAM, et al.Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia[J]Nat Med, 2007, 13( 10): 1203-1210.
doi: 10.1038/nm1636
148 BOUDILA, MATEII R, SHIHH Y, et al.IL-7 coordinates proliferation, differentiation and Tcra recombination during thymocyte β-selection[J]Nat Immunol, 2015, 16( 4): 397-405.
doi: 10.1038/ni.3122
149 NICOLASM, WOLFERA, RAJK, et al.Notch1 functions as a tumor suppressor in mouse skin[J]Nat Genet, 2003, 33( 3): 416-421.
doi: 10.1038/ng1099
150 VIATOURP, EHMERU, SADDICL A, et al.Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway[J]J Exp Med, 2011, 208( 10): 1963-1976.
doi: 10.1084/jem.20110198
151 GRILLIG, HERMIDA-PRADOF, áLVAREZ-FERNáNDEZM, et al.Impact of notch signaling on the prognosis of patients with head and neck squamous cell carcinoma[J]Oral Oncology, 2020, 105003.
doi: 10.1016/j.oraloncology.2020.105003
152 ANDRAEJ, GALLINIR, BETSHOLTZC. Role of platelet-derived growth factors in physiology and medicine[J]Genes Dev, 2008, 22( 10): 1276-1312.
doi: 10.1101/gad.1653708
153 PENNOCKS, KAZLAUSKASA. Vascular endothelial growth factor A competitively inhibits platelet-derived growth factor (PDGF)-dependent activation of PDGF receptor and subsequent signaling events and cellular responses[J]Mol Cellular Biol, 2012, 32( 10): 1955-1966.
doi: 10.1128/MCB.06668-11
154 KAZLAUSKASA. Receptor tyrosine kinases and their targets[J]Curr Opin Genets Dev, 1994, 4( 1): 5-14.
doi: 10.1016/0959-437x(94)90085-x
155 PAPADOPOULOSN, LENNARTSSONJ. The PDGF/PDGFR pathway as a drug target[J]Mol Aspects Med, 2018, 75-88.
doi: 10.1016/j.mam.2017.11.007
156 TEJADAM L, YUL, DONGJ, et al.Tumor-driven paracrine platelet-derived growth factor receptor α signaling is a key determinant of stromal cell recruitment in a model of human lung carcinoma[J]Clin Cancer Res, 2006, 12( 9): 2676-2688.
doi: 10.1158/1078-0432.CCR-05-1770
157 FLEMING T P, SAXENA A, CLARK W C, et al. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors[J]. Cancer Res, 1992,52(16): 4550-4553
158 KAZLAUSKASA. PDGFs and their receptors[J]Gene, 2017, 1-7.
doi: 10.1016/j.gene.2017.03.003
159 CORLESSC L, BARNETTC M, HEINRICHM C. Gastrointestinal stromal tumours: origin and molecular oncology[J]Nat Rev Cancer, 2011, 11( 12): 865-878.
doi: 10.1038/nrc3143
160 FREDRIKSSONL, LIH, ERIKSSONU. The PDGF family: four gene products form five dimeric isoforms[J]Cytokine Growth Factor Rev, 2004, 15( 4): 197-204.
doi: 10.1016/j.cytogfr.2004.03.007
161 LEWANDOWSKIS A, FREDRIKSSONL, LAWRENCED A, et al.Pharmacological targeting of the PDGF-CC signaling pathway for blood-brain barrier restoration in neurological disorders[J]Pharmacol Therapeutics, 2016, 108-119.
doi: 10.1016/j.pharmthera.2016.07.016
162 KAZLAUSKASA, BOWEN-POPED, SEIFERTR, et al.Different effects of homo- and heterodimers of platelet-derived growth factor A and B chains on human and mouse fibroblasts.[J]EMBO J, 1988, 7( 12): 3727-3735.
doi: 10.1002/j.1460-2075.1988.tb03256.x
163 HELDINC H, ?STMANA, R?NNSTRANDL. Signal transduction via platelet-derived growth factor receptors[J]BioChim Biophysica Acta (BBA) - Rev Cancer, 1998, 1378( 1): F79-F113.
doi: 10.1016/s0304-419x(98)00015-8
164 KELLYJ D, HALDEMANB A, GRANTF J, et al.Platelet-derived growth factor (PDGF) stimulates PDGF receptor subunit dimerization and intersubunit trans-phosphorylation[J]J Biol Chem, 1991, 266( 14): 8987-8992.
doi: 10.1016/S0021-9258(18)31541-2
165 DANILOVA I, GOMES-LEALW, AHLENIUSH, et al.Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone[J]Glia, 2009, 57( 2): 136-152.
doi: 10.1002/glia.20741
166 NODAK, KITAMIM, KITAMIK, et al.Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development[J/OL]Proc Natl Acad Sci U S A, 2016, 113( 19): E2589-E2597.
doi: 10.1073/pnas.1519458113
167 SCHNEIDERL, STOCKC M, DIETERICHP, et al.The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR-α in the primary cilium[J]J Cell Biol, 2009, 185( 1): 163-176.
doi: 10.1083/jcb.200806019
168 ?STMANA. PDGF receptors in tumor stroma: Biological effects and associations with prognosis and response to treatment[J]Adv Drug Deliver Rev, 2017, 117-123.
doi: 10.1016/j.addr.2017.09.022
169 HERMANSON M, FUNA K, KOOPMANN J, et al. Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas[J]. Cancer Res, 1996, 56(1): 164-171
[1] 沈烨琦,王中秀,谭静怡,钟佳慧,陈莉丽. 白介素-17 诱导自噬促进破骨前体细胞分化的机制[J]. 浙江大学学报(医学版), 2021, 50(2): 162-170.
[2] 舒敏,张文哲,金湘博,曾玲晖,项迎春. 敲除Sirt3后激活自噬对阿尔茨海默病有保护作用[J]. 浙江大学学报(医学版), 2020, 49(6): 750-757.
[3] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[4] 吴忧,梁顺利,徐彬,张荣博,徐林胜. 姜黄素保护帕金森病多巴胺能神经元的机制研究[J]. 浙江大学学报(医学版), 2018, 47(5): 480-486.
[5] 王青梅,舒敏,徐千姿,谢一乙,阮盛哲,王健达,曾玲晖. 和厚朴酚对癫痫小鼠学习记忆能力的改善作用[J]. 浙江大学学报(医学版), 2018, 47(5): 450-456.
[6] 朱锋,范苗,徐孜惟,蔡依廷,陈益臻,余双,曾玲晖. 雷帕霉素对帕金森病小鼠的保护作用[J]. 浙江大学学报(医学版), 2018, 47(5): 465-472.
[7] 吕丹丹,应可净. 自噬在肺动脉高压发生和发展中的调节作用[J]. 浙江大学学报(医学版), 2018, 47(2): 207-212.
[8] 田华 等. CD97免疫表位对乳腺癌细胞株MDA-MB231生物学行为的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 341-348.
[9] 王海凤 等. CXC趋化因子受体4通过S期激酶相关蛋白2调控乳腺癌细胞周期的机制[J]. 浙江大学学报(医学版), 2017, 46(4): 357-363.
[10] 张斌斌 等. 抑制哺乳动物雷帕霉素靶蛋白信号通路对慢性脑缺血小鼠认知功能的改善和机制[J]. 浙江大学学报(医学版), 2017, 46(4): 405-412.
[11] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[12] 陈晓静 等. 微RNA-let-7e-3p在宫颈上皮内瘤变和宫颈癌组织中的表达及临床意义[J]. 浙江大学学报(医学版), 2016, 45(4): 342-348.
[13] 娄鹏荣 等. 靶向RAD18的小干扰RNA对人食管鳞癌ECA-109细胞增殖和化疗敏感性的影响[J]. 浙江大学学报(医学版), 2016, 45(4): 364-370.
[14] 刘巧云 等. 锌与自噬[J]. 浙江大学学报(医学版), 2016, 45(3): 308-314.
[15] 曹建平, 夏大静. 自噬与肿瘤关系研究新进展[J]. 浙江大学学报(医学版), 2015, 44(2): 204-210.