Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (1): 106-112    DOI: 10.3724/zdxbyxb-2021-0044
原著     
瞬时受体电位 M2抑制剂 A10对缺糖缺氧后复糖复氧细胞的保护作用
黄卓群1(),余夏飞2,刘星宇2,马康3,黄敏华2,李芳芳2,杨巍2,*(),牛建国1,3
1. 宁夏医科大学宁夏颅脑疾病重点实验室,宁夏 银川 750004
2. 浙江大学基础医学院生物物理学系,浙江 杭州 310058
3. 宁夏医科大学基础医学院人体解剖与组织胚胎学系,宁夏 银川 750004
Protective effect of transient receptor potential melastatin 2 inhibitor A10 on oxygen glucose deprivation/reperfusion model
HUANG Zhuoqun1(),YU Xiafei2,LIU Xingyu2,MA Kang3,HUANG Minghua2,LI Fangfang2,YANG Wei2,*(),NIU Jianguo1,3
1. Laboratory of Brain,Ningxia Medical University,Yinchuan 750004,China;
2. Department of Biophysics,Zhejiang University School of Medicine,Hangzhou 310058,China;
3. Department of Human Anatomy,Histology and Embryology,School of Basic Medicine,Ningxia Medical University,Yinchuan 750004,China
 全文: PDF(3159 KB)   HTML( 8 )
摘要:

目的:探讨瞬时受体电位M2(TRPM2)抑制剂A10对缺糖缺氧后复糖复氧(OGD/R)细胞模型的保护作用。 方法:采用SH-SY5Y细胞系制备OGD/R损伤模型。将细胞随机分为空白对照组、模型对照组和A10组。细胞计数试剂盒8检测细胞存活率;活性氧检测试剂盒检测细胞活性氧水平;四甲基罗丹明甲酯法检测线粒体膜电位;一步法TUNEL细胞凋亡检测试剂盒检测凋亡细胞数量;蛋白质印迹法测定cleaved caspase 3 蛋白表达。 结果:相对于3、20、30、50和 100?μmol/L, 10?μmol/L浓度的A10具有较低的细胞毒性及较好的通道活性抑制作用。与模型对照组比较,A10组活性氧水平降低( P<0.05),线粒体膜电位降低程度改善( P<0.05),凋亡细胞数减少( P<0.05),凋亡相关蛋白cleaved caspase 3表达减少( P<0.05)。 结论:A10可以通过抑制TRPM2通道功能、减少细胞外钙离子内流、降低细胞活性氧水平、稳定线粒体膜电位水平和减少细胞凋亡缓解OGD/R后细胞的损伤。

关键词: 瞬时受体电位M2通道缺糖缺氧/复糖复氧活性氧线粒体膜电位细胞凋亡Cleaved caspase 3SH-SY5Y细胞    
Abstract:

Objective:To investigate the effect of transient receptor potential melastatin 2 (TRPM2) inhibitor A10 on oxygen glucose deprivation/reperfusion (OGD/R) injury in SH-SY5Y cells. Methods:Human neuroblastoma SH-SY5Y cells were subject to OGD/R injury,and then were divided into blank control group,model control group and A10 group randomly. The cell survival rate was detected by cell counting kit 8 (CCK-8); the level of cellular reactive oxygen species (ROS) was detected by reactive oxygen detection kit; the mitochondrial membrane potential was detected by tetramethylrhodamine (TMRM) method; the number of apoptotic cells was detected by TUNEL apoptosis assay kit; the protein expression level of cleaved caspase 3 was detected by Western blot. Results:Compared with 3,20,30,50, 100?μmol/L, 10?μmol/L?A10 has lower cytotoxicity and better inhibition effect on channel activity. Compared with the model control group,ROS level was reduced,the mitochondrial membrane potential was improved,the number of apoptosis cells was reduced ,and the expression of cleaved caspase 3 was significantly reduced in the A10 group(all P<0.05). Conclusion: A10 can alleviate cell damage after OGD/R by inhibiting TRPM2 channel function,reducing extracellular calcium influx,reducing cell ROS levels,stabilizing mitochondrial membrane potential levels,and reducing apoptosis.

Key words: Transient receptor potential melastatin 2 channel    Oxygen glucose deprivation/reperfusion    Reactive oxygen species    Mitochondrial membrane potential    Apoptosis    Cleaved caspase 3    SH-SY5Y cells
收稿日期: 2020-11-28 出版日期: 2021-05-14
CLC:  R743.31  
基金资助: 宁夏回族自治区重点研发(东西部合作)项目(2019BFH02003)
通讯作者: 杨巍     E-mail: huangzhuoqun1985@126.com;yangwei@zju.edu.cn
作者简介: 黄卓群,主治医师,主要从事脑缺血与神经退行性疾病研究;E-mail:huangzhuoqun1985@126.com;https:// orcid.org/0000-0002-2642-9425
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄卓群
余夏飞
刘星宇
马康
黄敏华
李芳芳
杨巍
牛建国

引用本文:

黄卓群,余夏飞,刘星宇,马康,黄敏华,李芳芳,杨巍,牛建国. 瞬时受体电位 M2抑制剂 A10对缺糖缺氧后复糖复氧细胞的保护作用[J]. 浙江大学学报(医学版), 2021, 50(1): 106-112.

HUANG Zhuoqun,YU Xiafei,LIU Xingyu,MA Kang,HUANG Minghua,LI Fangfang,YANG Wei,NIU Jianguo. Protective effect of transient receptor potential melastatin 2 inhibitor A10 on oxygen glucose deprivation/reperfusion model. J Zhejiang Univ (Med Sci), 2021, 50(1): 106-112.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0044        http://www.zjujournals.com/med/CN/Y2021/V50/I1/106

图 1  不同浓度瞬时受体电位M2抑制剂A10对SH-SY5Y细胞的药物毒性 与浓度比较,<0.01.

组别

n

细胞存活率

活性氧水平

线粒体膜电位

相对细胞凋亡水平

cleaved caspase 3蛋白相对表达量

空白对照组

3

101.5±5.5

100.0±4.5

100.0±5.0

100.0±20.8

100.0

模型对照组

3

60.1±6.2 *

187.6±4.9 *

45.0±15.0 *

452.0±130.7 *

125.6±12.0 *

A10组

3

74.5±8.2 *#

125.1±11.5 *#

70.0±7.3 *#

166.2±51.9 #

93.4±12.8 #

F

64.94

104.10

30.92

15.59

14.11

P

<0.05

<0.05

<0.05

<0.05

<0.05

表 1  缺糖缺氧复糖复氧处理后TRPM2抑制剂A10对细胞存活率、活性氧水平、线粒体膜电位、细胞凋亡数以及cleaved caspase 3蛋白表达水平的影响
图 2  缺糖缺氧复糖复氧处理后A10对细胞活性氧水平的影响 A:空白对照组细胞的绿色荧光强度弱;B:模型对照组细胞的绿色荧光强度强,活性氧水平升高;C:A10组细胞的绿色荧光强度较模型对照组减弱. 标尺
图 3  缺糖缺氧复糖复氧处理后A10对细胞线粒体膜电位变化的影响 A:空白对照组细胞红色荧光强度强;B:模型对照组细胞红色荧光强度弱,线粒体膜电位降低;C:A10组细胞红色荧光强度较模型对照组增强. 标尺
图 4  缺糖缺氧复糖复氧处理后A10对细胞凋亡的影响 A:空白对照组,TUNEL阳性细胞数较少;B:模型对照组,TUNEL阳性细胞数较空白对照组增多;C:A10组TUNEL阳性细胞数较模型对照组减少. 标尺
图 5  缺糖缺氧复糖复氧处理后A10对凋亡相关蛋白cleaved caspase 3表达的影响
1 YU C Z, LI C, PEI D S, et al. Neuroprotection against transient focal cerebral ischemia and oxygen–glucose deprivation by interference with GluR6-PSD 95 protein interaction[J] . Neurochem Res, 2009, 34(11): 2008-2021.
doi: 10.1007/s11064-009-9990-z
2 BAK S W, CHOI H, PARK H H, et al. Neuroprotective effects of acetyl-L-carnitine against oxygen-glucose deprivation-induced neural stem cell death[J]. Mol Neurobiol, 2016, 53(10): 6644-6652.
doi: 10.1007/s12035-015-9563-x
3 ZHAN K, YU P, LIU C, et al. Detrimental or beneficial:the role of TRPM2 in ischemia/reperfusion injury[J]. Acta Pharmacol Sin, 2016, 37(1): 4-12.
doi: 10.1038/aps.2015.141
4 BEHROUZIFAR S, VAKILI A, BANDEGI A R, et al. Neuroprotective nature of adipokine resistin in the early stages of focal cerebral ischemia in a stroke mouse model[J]. Neurochem Int, 2018, 99-107.
doi: 10.1016/j.neuint.2018.02.001
5 FONFRIA E, MURDOCK P R, CUSDIN F S, et al. Tissue distribution profiles of the human TRPM cation channel family[J]. J Recept Signal Transduct Res, 2006, 26(3): 159-178.
6 BELROSE J C, JACKSON M F . TRPM2:a candidate therapeutic target for treating neurological diseases[J]. Acta Pharmacol Sin, 2018, 39(5): 722-732.
doi: 10.1038/aps.2018.31
7 KANEKO S, KAWAKAMI S, HARA Y, et al. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide[J]. J Pharmacol Sci, 2006, 101(1): 66-76.
doi: 10.1254/jphs.fp0060128
8 JIA J, VERMA S, NAKAYAMA S, et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke[J]. J Cereb Blood Flow Metab, 2011, 31(11): 2160-2168.
doi: 10.1038/jcbfm.2011.77
9 HUANG S, TURLOVA E, LI F, et al. Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice[J]. Exp Neurology, 2017, 32-40.
doi: 10.1016/j.expneurol.2017.06.023
10 ZHANG H, LIU H, LUO X, et al. Design,synthesis and biological activities of 2,3-dihydroquinazolin-4(1H)-one derivatives as TRPM2 inhibitors[J]. Eur J Medicinal Chem, 2018, 235-252.
doi: 10.1016/j.ejmech.2018.04.045
11 CLAPHAM D E . TRP channels as cellular sensors[J]. Nature, 2003, 426(6966): 517-524.
doi: 10.1038/nature02196
12 NAGAMINE K, KUDOH J, MINOSHIMA S, et al. Molecular cloning of a novel putative Ca 2+ channel protein (TRPC7) highly expressed in brain[J] . Genomics, 1998, 54(1): 124-131.
doi: 10.1006/geno.1998.5551
13 MCHUGH D, FLEMMING R, XU S Z, et al. Critical intracellular Ca 2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation[J] . J Biol Chem, 2003, 278(13): 11002-11006.
doi: 10.1074/jbc.M210810200
14 YAMAMOTO S, SHIMIZU S, KIYONAKA S, et al. TRPM2-mediated Ca 2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration[J] . Nat Med, 2008, 14(7): 738-747.
doi: 10.1038/nm1758
15 GAO G, WANG W, TADAGAVADI R K, et al. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1[J]. J Clin Invest, 2014, 124(11): 4989-5001.
doi: 10.1172/JCI76042
16 HERSON P S, LEE K, PINNOCK R D, et al. Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line[J]. J Biol Chem, 1999, 274(2): 833-841.
doi: 10.1074/jbc.274.2.833
17 SONG K, WANG H, KAMM G B, et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia[J]. Science, 2016, 353(6306): 1393-1398.
doi: 10.1126/science.aaf7537
18 HERMOSURA M C, CUI A M, GO R C V, et al. Altered functional properties of a TRPM2 variant in Guamanian ALS and PD[J] . Proc Natl Acad Sci USA, 2008, 105(46): 18029-18034.
doi: 10.1073/pnas.0808218105
19 FONFRIA E, MARSHALL I C B, BOYFIELD I, et al. Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures[J]. J Neurochem, 2005, 95(3): 715-723.
doi: 10.1111/j.1471-4159.2005.03396.x
20 VERMA S, QUILLINAN N, YANG Y F, et al. TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death[J] . NeuroSci Lett, 2012, 530(1): 41-46.
doi: 10.1016/j.neulet.2012.09.044
21 YE M, YANG W, AINSCOUGH J F, et al. TRPM2 channel deficiency prevents delayed cytosolic Zn 2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia[J/OL] . Cell Death Dis, 2014, 5(11): e1541.
doi: 10.1038/cddis.2014.494
22 RUIZ A, MATUTE C, ALBERDI E . Endoplasmic reticulum Ca 2+ release through ryanodine and IP3 receptors contributes to neuronal excitotoxicity[J] . Cell Calcium, 2009, 46(4): 273-281.
doi: 10.1016/j.ceca.2009.08.005
23 SHADEL G S, HORVATH T L . Mitochondrial ROS signaling in organismal homeostasis[J]. Cell, 2015, 163(3): 560-569.
doi: 10.1016/j.cell.2015.10.001
24 SZABADKAI G, DUCHEN M R . Mitochondria:the hub of cellular Ca 2+ signaling[J] . Physiology, 2008, 23(2): 84-94.
doi: 10.1152/physiol.00046.2007
25 GREEN D R, GALLUZZI L, KROEMER G . Metabolic control of cell death[J]. Science, 2014, 345(6203): 1250256.
doi: 10.1126/science.1250256
[1] 叶嘉仪,龚恒佩,王凌峰,黄真,仇凤梅,钟晓明. 玄参环烯醚萜苷对氧糖剥夺再灌注细胞模型内质网钙稳态的调控作用[J]. 浙江大学学报(医学版), 2020, 49(6): 705-713.
[2] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[3] 方娟,潘志成,郭晓纲. INK4基因座中反义非编码RNA调控细胞增殖与凋亡影响动脉粥样硬化的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 113-117.
[4] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[5] 马竞, 何文龙, 高重阳, 余瑞云, 薛鹏, 牛永超. 木瓜苷通过抑制NF-κB P65/TNF-α通路活性减轻小鼠脑缺血再灌注诱导的组织损伤[J]. 浙江大学学报(医学版), 2019, 48(3): 289-295.
[6] 杨坤,胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.
[7] 梁刚, 牛育苗, 李一涵, 魏安怡, 董静尹, 曾玲晖. 雷帕霉素在大鼠局灶性脑缺血再灌注后24 h给药对脑损伤的保护作用[J]. 浙江大学学报(医学版), 2018, 47(5): 443-449.
[8] 林卡娜,林美丽,顾莹芬,张顺国,黄诗颖. G蛋白偶联受体17在视网膜神经节细胞缺氧损伤中的作用[J]. 浙江大学学报(医学版), 2018, 47(5): 487-492.
[9] 林美娜,许瑞元,章涛,张琳,梅序桥. 类风湿关节炎患者外周血单个核细胞中c-FLIP与外源性凋亡途径的相关性分析[J]. 浙江大学学报(医学版), 2018, 47(4): 381-388.
[10] 何佳怡,张信美. 氧化应激在子宫内膜异位症发病机制中的研究进展[J]. 浙江大学学报(医学版), 2018, 47(4): 419-425.
[11] 丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.
[12] 田华 等. CD97免疫表位对乳腺癌细胞株MDA-MB231生物学行为的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 341-348.
[13] 张斌斌 等. 抑制哺乳动物雷帕霉素靶蛋白信号通路对慢性脑缺血小鼠认知功能的改善和机制[J]. 浙江大学学报(医学版), 2017, 46(4): 405-412.
[14] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[15] 林伟仁 等. zeste基因增强子同源物2抑制剂GSK126对前列腺癌细胞的作用及机制[J]. 浙江大学学报(医学版), 2016, 45(4): 356-363.