Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (1): 123-130    DOI: 10.3724/zdxbyxb-2021-0030
综述     
中性粒细胞在哮喘中的地位和作用
陈菲(),虞敏,钟永红,华雯,黄华琼()
浙江大学医学院附属第二医院呼吸与危重症医学科,浙江 杭州310009
The role of neutrophils in asthma
CHEN Fei(),YU Min,ZHONG Yonghong,HUA Wen,HUANG Huaqiong()
Department of Respiratory and Critical Care Medicine,the Second Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310009,China
 全文: PDF(2608 KB)   HTML( 14 )
摘要:

支气管哮喘是由多种细胞包括气道的炎性细胞和结构细胞及细胞组分参与的气道慢性炎症性疾病,其特征为气道炎症、气道高反应性、可逆性气道阻塞和气道重塑。以往哮喘被认为主要由2型炎症因子驱动,Th2细胞分泌IL-4、IL-5和IL-13,引起气道嗜酸性粒细胞炎症。随着研究的深入,发现中性粒细胞与哮喘炎症过程也存在密切关系。哮喘患者气道中的中性粒细胞在趋化增加的同时凋亡下降,从而导致中性粒细胞数量增多。中性粒细胞比嗜酸性粒细胞更早到达,通过产生弹性蛋白酶、髓过氧化物酶、中性粒细胞胞外诱捕网、趋化因子和细胞因子等,参与哮喘的发生及发展过程。针对这些效应分子的拮抗剂如抗IL-8受体抗体、抗IL-17抗体,DNA酶显示出对中性粒细胞哮喘的治疗作用,但应用于临床还需要更多的实验数据支持。本文主要就中性粒细胞在哮喘中的地位和作用作一综述。

关键词: 中性粒细胞哮喘中性粒细胞哮喘治疗; 综述    
Abstract:

Bronchial asthma is a chronic respiratory disease,characterized by airway inflammation,airway hyperresponsiveness,reversible airway obstruction and airway remodeling,in which a variety of cells including airway inflammatory cells and structural cells are involved. Previous studies have shown that asthma is mainly driven by Th2 cytokines IL-4,IL-5,and IL-13,leading to airway eosinophil inflammation. With further research,however,it has been found that neutrophils are also closely related to asthma. Numbers of neutrophils are elevated in airway through increased chemotaxis and decreased apoptosis,which is earlier than eosinophils,leading to airway neutrophilic inflammation. Neutrophils can produce elastase,myeloperoxidase,neutrophil extra- cellular traps,chemokines and cytokines,participating in the occurrence and development of asthma. The antagonists against these molecules,such as anti-IL-8 receptor antibody,anti-IL-17 antibody,and DNase,have shown positive effects on neutrophilic asthma,but further studies are needed to support their clinical application. This article mainly reviews the role of neutrophils in asthma and related mechanisms.

Key words: Neutrophils    Asthma    Neutrophilic asthma    Therapy; Review
收稿日期: 2020-09-14 出版日期: 2021-05-14
CLC:  R562.1  
基金资助: 国家重点研发计划(2017YFC131060); 浙江省自然科学基金(LQ18H010002)
通讯作者: 黄华琼     E-mail: chenfei66@zju.edu.cn;zr_hhq@zju.edu.cn
作者简介: 陈菲,硕士研究生,主要从事呼吸系统慢性疾病研究; E-mail:chenfei66@zju.edu.cn; https://orcid.org/0000-0001-6017-2785
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈菲
虞敏
钟永红
华雯
黄华琼

引用本文:

陈菲,虞敏,钟永红,华雯,黄华琼. 中性粒细胞在哮喘中的地位和作用[J]. 浙江大学学报(医学版), 2021, 50(1): 123-130.

CHEN Fei,YU Min,ZHONG Yonghong,HUA Wen,HUANG Huaqiong. The role of neutrophils in asthma. J Zhejiang Univ (Med Sci), 2021, 50(1): 123-130.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0030        http://www.zjujournals.com/med/CN/Y2021/V50/I1/123

图 1  中性粒细胞在哮喘中的作用机制示意图 香烟烟雾、颗粒物、微生物等刺激气道上皮细胞、树突状细胞、巨噬细胞等产生IL-6、IL-8、GM-CSF等细胞因子,引起中性粒细胞趋化增加及凋亡下降;浸润的中性粒细胞活化可产生活性氧、MMP、NET等,引起气道上皮损伤,损伤的气道上皮可进一步分泌趋化因子及炎症介质等,加重气道炎症反应.IL:白细胞介素;GM-CSF:粒细胞-巨噬细胞集落刺激因子;TNF:肿瘤坏死因子;NET:中性粒细胞胞外诱捕网;MMP:基质金属蛋白酶;ECP:嗜酸性粒细胞阳离子蛋白;TSLP:胸腺基质淋巴细胞生成素;VEGF:血管内皮生长因子.
1 PETERS M C, WENZEL S E . Intersection of biology and therapeutics:type 2 targeted therapeutics for adult asthma[J]. Lancet, 2020, 395(10221): 371-383.
doi: 10.1016/S0140-6736(19)33005-3
2 ZHANG J, ZHU Z, ZUO X, et al. The role of NTHi colonization and infection in the pathogenesis of neutrophilic asthma[J]. Respir Res, 2020, 21(1): 170.
doi: 10.1186/s12931-020-01438-5
3 GRUNWELL J R, STEPHENSON S T, TIROUVAN- ZIAM R, et al. Children with neutrophil-predominant severe asthma have proinflammatory neutrophils with enhanced survival and impaired clearance[J]. J Allergy Clin Immunol-Practice, 2019, 7(2): 516-525.e6.
doi: 10.1016/j.jaip.2018.08.024
4 KHAN M A, ALI Z S, SWEEZEY N, et al. Progression of cystic fibrosis lung disease from childhood to adulthood:neutrophils,neutrophil extracellular trap (NET) formation,and net degradation[J]. Genes, 2019, 10(3): 183.
doi: 10.3390/genes10030183
5 MANTOVANI A, CASSATELLA M A, COSTANTINI C, et al. Neutrophils in the activation and regulation of innate and adaptive immunity[J]. Nat Rev Immunol, 2011, 11(8): 519-531.
doi: 10.1038/nri3024
6 RADERMECKER C,LOUIS R,BUREAU F,et al. Role of neutrophils in allergic asthma[J]. Curr Opin Immunol,2018,54:28–34.DOl:10.1016/j.coi. 2018.05.006 .
7 LIU W, CHEN H, ZHANG D, et al. A retrospective study of clinical features of cough variant asthma in Chinese adults[J]. Allergy Asthma Clin Immunol, 2019, 15(1): 3.
doi: 10.1186/s13223-019-0318-5
8 SIMPSON J L, SCOTT R, BOYLE M J, et al. Inflamma- tory subtypes in asthma:Assessment and identification using induced sputum[J]. Respirology, 2006, 11(1): 54-61.
doi: 10.1111/j.1440-1843.2006.00784.x
9 TAYLOR S L,LEONG L E X,CHOO J M,et al. Inflam- matory phenotypes in patients with severe asthma are associated with distinct airway microbiology[J]. J Allergy Clin Immunol,2018,141(1):94–103.e115.DOl:10.1016/j.jaci.2017.03.044 .
10 NAIR P, PRABHAVALKAR K S . Neutrophilic asthma and potentially related target therapies[J]. Curr Drug Targets, 2020, 21(4): 374-388.
doi: 10.2174/1389450120666191011162526
11 NAIR P, AZIZ-UR-REHMAN A, RADFORD K . Therapeutic implications of ‘neutrophilic asthma’ [J]. Curr Opin Pulmonary Med, 2015, 21(1): 33-38.
doi: 10.1097/MCP.0000000000000120
12 PANETTIERI JR. R A . Neutrophilic and pauci-immune phenotypes in severe asthma[J]. Immunol Allergy Clinics North Am, 2016, 36(3): 569-579.
doi: 10.1016/j.iac.2016.03.007
13 SEYS S F, LOKWANI R, SIMPSON J L, et al. New insights in neutrophilic asthma[J]. Curr Opin Pulmonary Med, 2019, 25(1): 113-120.
doi: 10.1097/MCP.0000000000000543
14 PATEL K K, WEBLEY W C . Respiratory chlamydia infection induce release of hepoxilin A3 and histamine production by airway neutrophils[J]. Front Immunol, 2018,
doi: 10.3389/fimmu.2018.02357
15 WANG G, PANG Z, CHEN-YU HSU A, et al. Combined treatment with SB203580 and dexamethasone suppresses non-typeable Haemophilus influenzae-induced Th17 inflammation response in murine allergic asthma[J]. Eur J Pharmacol, 2019, 172623.
doi: 10.1016/j.ejphar.2019.172623
16 RADERMECKER C, SABATEL C, VANWINGE C, et al. Locally instructed CXCR4hi neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps[J]. Nat Immunol, 2019, 20(11): 1444-1455.
doi: 10.1038/s41590-019-0496-9
17 GENG X, WANG X, LUO M, et al. Induction of neutrophil apoptosis by a Bcl-2 inhibitor reduces particulate matter-induced lung inflammation[J]. Aging, 2018, 10(6): 1415-1423.
doi: 10.18632/aging.101477
18 PANG L,ZOU S,SHI Y,et al. Apigenin attenuates PM2.5-induced airway hyperresponsiveness and inflammation by down-regulating NF-κB in murine model of asthma[J]. Int J Clin Exp Pathol,2019,12(10):3700–3709 .
19 SHORE S A . Mechanistic basis for obesity-related increases in ozone-induced airway hyperresponsi- veness in mice[J]. Ann ATS, 2017, 14(Supplement_5): S357-S362.
doi: 10.1513/AnnalsATS.201702-140AW
20 RAY A, KOLLS J K . Neutrophilic inflammation in asthma and association with disease severity[J]. Trends Immunol, 2017, 38(12): 942-954.
doi: 10.1016/j.it.2017.07.003
21 MATSUSHIMA H, GENG S, LU R, et al. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells[J]. Blood, 2013, 121(10): 1677-1689.
doi: 10.1182/blood-2012-07-445189
22 ZHAN C, XU R, LIU J, et al. Increased sputum IL-17A level in non-asthmatic eosinophilic bronchitis[J]. Lung, 2018, 196(6): 699-705.
doi: 10.1007/s00408-018-0166-y
23 WHITEHEAD G S,KANG H S,THOMAS S Y,et al. Therapeutic suppression of pulmonary neutrophilia and allergic airway hyperresponsiveness by a RORγt inverse agonist[J/OL]. JCI Insight,2019,5(14):e125528.DOl:10.1172/jci.insight.125528 .
24 WITOWSKI J, KSI??EK K, J?RRES A . Interleukin-17:a mediator of inflammatory responses[J]. Cell Mol Life Sci, 2004, 61(5): 567-579.
doi: 10.1007/s00018-003-3228-z
25 LUCHERINI O M, LOPALCO G, CANTARINI L, et al. Critical regulation of Th17 cell differentiation by serum amyloid-A signalling in Behcet’s disease[J]. Immunol Lett, 2018, 38-44.
doi: 10.1016/j.imlet.2018.10.013
26 DIMITROVA D, YOUROUKOVA V, IVANOVA-TODOROVA E, et al. Serum levels of IL-5,IL-6,IL-8,IL-13 and IL-17A in pre-defined groups of adult patients with moderate and severe bronchial asthma[J]. Respiratory Med, 2019, 144-154.
doi: 10.1016/j.rmed.2019.06.024
27 PAL K, FENG X, STEINKE J W, et al. Leukotriene A4 hydrolase activation and leukotriene B4 production by eosinophils in severe asthma[J]. Am J Respir Cell Mol Biol, 2019, 60(4): 413-419.
doi: 10.1165/rcmb.2018-0175OC
28 ELLER M C N, VERGANI K P, SARAIVA-ROMANHOLO B M, et al. Can inflammatory markers in induced sputum be used to detect phenotypes and endotypes of pediatric severe therapy-resistant asthma?[J]. Pediatr Pulmonol, 2018, 53(9): 1208-1217.
doi: 10.1002/ppul.24075
29 PINTARD C, BEN KHEMIS M, LIU D, et al. Apocynin prevents GM-CSF-induced-ERK1/2 activation and -neutrophil survival independently of its inhibitory effect on the phagocyte NADPH oxidase NOX2[J]. Biochem Pharmacol, 2020, 113950.
doi: 10.1016/j.bcp.2020.113950
30 HILLIARD K A, BLAHO V A, JACKSON C D, et al. Leukotriene B4 receptor BLT1 signaling is critical for neutrophil apoptosis and resolution of experimental Lyme arthritis[J]. FASEB J, 2020, 34(2): 2840-2852.
doi: 10.1096/fj.201902014R
31 MCCRACKEN J M, ALLEN L A H . Regulation of human neutrophil apoptosis and lifespan in health and disease[J]. J Cell Death, 2014, JCD.S11038.
doi: 10.4137/JCD.S11038
32 BARCELLOS-DE-SOUZA P,CANETTI C,BARJA-FIDALGO C,et al. Leukotriene B(4) inhibits neutrophil apoptosis via NADPH oxidase activity: redox control of NF-κB pathway and mitochondrial stability[J]. Biochim Biophys Acta,2012,1823(10):1990–1997.DOl:10.1016/j.bbamcr.2012. 07.012 .
33 顾晓菲,陈鑫淼,陈慧君,等. S100A8/RAGE、Caveolin-1在中性粒细胞性支气管哮喘大鼠中的作用及罗红霉素对其表达的影响[J]. 中华结核和呼吸杂志,2019,42(11):845–851. DOI: 10.3760/cma.j.issn.1001-0939.2019.11.012 .
34 KIM D H, CHOI E, LEE J S, et al. House dust mite allergen regulates constitutive apoptosis of normal and asthmatic neutrophils via toll-like receptor 4 [J/OL]. PLoS One, 2015, 10(5): e0125983.
doi: 10.1371/journal.pone.0125983
35 KIM D H, GU A, LEE J S, et al. Suppressive effects of S100A8 and S100A9 on neutrophil apoptosis by cytokine release of human bronchial epithelial cells in asthma[J]. Int J Med Sci, 2020, 17(4): 498-509.
doi: 10.7150/ijms.37833
36 WENG Q, ZHU C, ZHENG K, et al. Early recruited neutrophils promote asthmatic inflammation exacerbation by release of neutrophil elastase[J]. Cellular Immunol, 2020, 104101.
doi: 10.1016/j.cellimm.2020.104101
37 TOUSSAINT M,JACKSON D J,SWIEBODA D,et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation[J]. Nat Med,2017,23(6):681–691.DOl:10.1038/nm. 4332 .
38 WEERAPPULI P D, LOUTTIT C, KOJIMA T, et al. Extracellular trap-mimicking DNA‐histone mesostructures synergistically activate dendritic cells[J/OL]. Adv Healthcare Mater, 2019, 8(22): 1900926.
doi: 10.1002/adhm.201900926
39 MONTESEIRíN J. Neutrophils and asthma[J]. J Investig Allergol Clin Immunol,2009,19(5):340–354 .
40 GRZELA K, LITWINIUK M, ZAGORSKA W, et al. Airway remodeling in chronic obstructive pulmonary disease and asthma:the role of matrix metallopro- teinase-9[J]. Arch Immunol Ther Exp, 2016, 64(1): 47-55.
doi: 10.1007/s00005-015-0345-y
41 SIMPSON J L, SCOTT R J, BOYLE M J, et al. Differential proteolytic enzyme activity in eosinophilic and neutrophilic asthma[J]. Am J Respir Crit Care Med, 2005, 172(5): 559-565.
doi: 10.1164/rccm.200503-369OC
42 CUI H, HUANG J, LU M, et al. Antagonistic effect of vitamin E on nAl2O3-induced exacerbation of Th2 and Th17-mediated allergic asthma via oxidative stress[J]. Environ Pollut, 2019, 1519-1531.
doi: 10.1016/j.envpol.2019.06.092
43 LI Y, ZHANG L, WANG X, et al. Effect of Syringic acid on antioxidant biomarkers and associated inflam- matory markers in mice model of asthma[J]. Drug Dev Res, 2019, 80(2): 253-261.
doi: 10.1002/ddr.21487
44 KIM S H, UUGANBAYAR U, TRINH H K T, et al. Evaluation of neutrophil activation status according to the phenotypes of adult asthma[J]. Allergy Asthma Immunol Res, 2019, 11(3): 381.
doi: 10.4168/aair.2019.11.3.381
45 KEATINGS V M, BARNES P J . Granulocyte activation markers in induced sputum:comparison between chronic obstructive pulmonary disease,asthma,and normal subjects[J]. Am J Respir Crit Care Med, 1997, 155(2): 449-453.
doi: 10.1164/ajrccm.155.2.9032177
46 ALI I, KHAN S N, CHATZICHARALAMPOUS C, et al. Catalase prevents myeloperoxidase self-destruction in response to oxidative stress[J]. J Inorg Biochem, 2019, 110706.
doi: 10.1016/j.jinorgbio.2019.110706
47 MOSCHONAS I C, TSELEPIS A D . The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis[J]. Atherosclerosis, 2019, 9-16.
doi: 10.1016/j.atherosclerosis.2019.06.919
48 LACHOWICZ-SCROGGINS M E, DUNICAN E M, CHARBIT A R, et al. Extracellular DNA,neutrophil extracellular traps,and inflammasome activation in severe asthma[J]. Am J Respir Crit Care Med, 2019, 199(9): 1076-1085.
doi: 10.1164/rccm.201810-1869OC
49 MURCIA R Y, VARGAS A, LAVOIE J P . The interleukin-17 induced activation and increased survival of equine neutrophils is insensitive to glucocorticoids [J/OL]. PLoS One, 2016, 11(5): e0154755.
doi: 10.1371/journal.pone.0154755
50 张星慧,常晓悦. 中性粒细胞性哮喘与其相关细胞因子[J]. 国际呼吸杂志,2017,37(23):1815–1818. DOI:10.3760/cma.j.issn.1673-436X.2017.23.011 .
51 RODRíGUEZ-CERDEIRA C,GONZáLEZ-CESPóN J L,MARTíNEZ-HERRERA E,et al. Candida infections in patients with psoriasis and psoriatic arthritis treated with interleukin-17 inhibitors and their practical management[J]. G Ital Dermatol Venereol,2020. DOI: 10.23736/S0392-0488.20. 06580-3 .
52 LIANG L, HUR J, KANG J Y, et al. Effect of the anti-IL-17 antibody on allergic inflammation in an obesity-related asthma model[J]. Korean J Intern Med, 2018, 33(6): 1210-1223.
doi: 10.3904/kjim.2017.207
53 BUSSE W W, HOLGATE S, KERWIN E, et al. Randomized,double-blind,placebo-controlled study of brodalumab,a human anti–IL-17 receptor monoclonal antibody,in moderate to severe asthma[J]. Am J Respir Crit Care Med, 2013, 188(11): 1294-1302.
doi: 10.1164/rccm.201212-2318OC
54 STATON T L, PENG K, OWEN R, et al. A phase I,randomized,observer-blinded,single and multiple ascending-dose study to investigate the safety,phar- macokinetics,and immunogenicity of BITS7201A,a bispecific antibody targeting IL-13 and IL-17,in healthy volunteers[J]. BMC Pulm Med, 2019, 19(1): 5.
doi: 10.1186/s12890-018-0763-9
55 TODD C M, SALTER B M, MURPHY D M, et al. The effects of a CXCR1/CXCR2 antagonist on neutrophil migration in mild atopic asthmatic subjects[J]. Pulm Pharmacol Ther, 2016, 34-39.
doi: 10.1016/j.pupt.2016.09.005
56 NAIR P,GAGA M,ZERVAS E,et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized,placebo-controlled clinical trial[J]. Clin Exp Allergy,2012,42(7):1097–1103. DOl:10.1111/j.1365-2222.2012.04014.x .
57 WATZ H,UDDIN M,PEDERSEN F,et al. Effects of the CXCR2 antagonist AZD5069 on lung neutrophil recruitment in asthma[J]. Pulm Pharmacol Ther,2017,45:121–123. DOl:10.1016/j.pupt.2017.05.012 .
58 O’BYRNE P M, METEV H, PUU M, et al. Efficacy and safety of a CXCR2 antagonist,AZD5069,in patients with uncontrolled persistent asthma:a randomised,double-blind,placebo-controlled trial[J]. Lancet Respiratory Med, 2016, 4(10): 797-806.
doi: 10.1016/S2213-2600(16)30227-2
59 AN T J, RHEE C K, KIM J H, et al. Effects of macrolide and corticosteroid in neutrophilic asthma mouse model[J]. Tuberc Respir Dis, 2018, 81(1): 80.
doi: 10.4046/trd.2017.0108
60 PANETTIERI R A JR. The role of neutrophils in asthma[J]. Immunol Allergy Clin North Am,2018,38(4):629–638. DOl:10.1016/j.iac.2018.06.005 .
61 LOVERDOS K, BELLOS G, KOKOLATOU L, et al. Lung microbiome in asthma:current perspectives[J]. JCM, 2019, 8(11): 1967.
doi: 10.3390/jcm8111967
[1] 徐亦鸣,应可净. 中性粒细胞胞外诱捕网与肿瘤相关研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 107-112.
[2] 华雯 等. 《支气管哮喘防治指南(2016年版)》解读[J]. 浙江大学学报(医学版), 2016, 45(5): 447-452.
[3] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[4] 宋顺德,汤慧芳 . 环腺苷酸磷酸二酯酶4抑制剂靶向治疗炎症性疾病研究新进展[J]. 浙江大学学报(医学版), 2014, 43(3): 353-358.
[5] . IL-18基因修饰的成熟树突状细胞疫苗对哮喘小鼠气道炎症的预防作用[J]. 浙江大学学报(医学版), 2011, 40(2): 176-183.
[6] 楼宏强;应延风;胡野. CRTH2受体拮抗剂缓解大鼠哮喘模型气道炎症[J]. 浙江大学学报(医学版), 2010, 39(1): 64-70.
[7] 钟波,王慧莲,Muhammad Shahzad,宁启兰,韩燕,杨旭东,张富军,吕社民. 利用抑制性消减杂交技术筛选大鼠哮喘相关基因[J]. 浙江大学学报(医学版), 2009, 38(4): 362-369.
[8] 王秦川,陈宇,汤慧芳,汤锦菲,陆建菊,陈季强. ICR小鼠吸烟诱导肺部炎症模型的建立及其特征[J]. 浙江大学学报(医学版), 2008, 37(4): 328-332.
[9] 董新威,杜晓刚,张水娟,陈季强,谢强敏. BIO-1211对大鼠支气管收缩和白细胞黏附反应的抑制作用[J]. 浙江大学学报(医学版), 2008, 37(4): 340-344.
[10] 杜晓刚,董新威,陈季强,谢强敏. 百日咳蛋白对小鼠过敏性哮喘模型的免疫调节作用[J]. 浙江大学学报(医学版), 2008, 37(4): 351-356.
[11] 鲁晓勇,周建英. 以不同溶媒雾化吸入沙丁胺醇对哮喘急性发作治疗作用的Meta分析[J]. 浙江大学学报(医学版), 2006, 35(3): 336-341.
[12] 陈一芳;考验;忻学英;江克文. 肺功能检测在小儿呼吸道疾病中的临床应用 [J]. 浙江大学学报(医学版), 2005, 34(4): 365-367.
[13] 汤慧芳;陈季强;谢强敏;赵晓燕;柯传奎. 隐孔菌多糖成分对致敏大鼠气道高反应性和炎症细胞的影响[J]. 浙江大学学报(医学版), 2003, 32(4): 287-291.
[14] 杨晓红;魏尔清. 抗原致敏大鼠离体肺片VCAM-1表达及药物调节作用[J]. 浙江大学学报(医学版), 2003, 32(4): 319-322.
[15] 邓俊芳;谢强敏;邓杨梅;邵传森;陈季强. 致敏小鼠肺组织eotaxin和TNF-α的表达及药物的影响[J]. 浙江大学学报(医学版), 2003, 32(4): 283-286.