Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (1): 52-60    DOI: 10.3724/zdxbyxb-2021-0028
2019冠状病毒病     
基于社会经济水平、人口流动和疫情防控措施评估我国主要城市应对 2019冠状病毒病的策略
王思思1,2(),叶元庆1,2,3,徐小林1,2,王思聪1,2,徐欣1,2,袁长征1,2,李舒1,2,曹淑殷1,2,李文渊1,2,陈辰1,2,胡可嘉1,2,雷浩1,2,朱慧4,*(),祝勇5,吴息凤1,2,3
1. 浙江大学医学院附属第二医院生物统计、生物信息学和大数据中心,浙江 杭州 310009
2. 浙江大学医学院公共卫生学院大数据健康科学系,浙江 杭州 310058
3. 浙江大学健康医疗大数据国家研究院,浙江 杭州 310058
4. 浙江大学医学院,浙江 杭州 310058
5. 美国耶鲁大学耶鲁公共卫生学院,康涅狄格州 纽黑文市 06520
Impact of socioeconomic status,population mobility and control measures on COVID-10 development in major cities of China
WANG Sisi1,2(),YE Yuanqing1,2,3,XU Xiaolin1,2,WANG Sicong1,2,XU Xin1,2,YUAN Changzheng1,2,LI Shu1,2,CAO Shuyin1,2,LI Wenyuan1,2,CHEN Chen1,2,HU Kejia1,2,LEI Hao1,2,ZHU Hui4,*(),ZHU Yong5,WU Xifeng1,2,3
1. Center for Biostatistics,Bioinformatics and Big Data, the Second Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310009,China;
2. Department of Big Data in Health Science,School of Public Health,Zhejiang University School of Medicine,Hangzhou 310058,China;
Hangzhou 310058,China 3. National Institute for Data Science in Health and Medicine,Zhejiang University, Hangzhou 310058,China;
4. Zhejiang University School of Medicine,Hangzhou 310058,China;
5. Yale School of Public Health,Yale University,New Haven 06520,Connecticut,USA
 全文: PDF(3392 KB)   HTML( 16 )
摘要:

目的:评估我国主要城市社会经济水平、人口流动和疫情防控措施对2019冠状病毒病(COVID-19)疫情初期发展的影响。 方法:对湖北省以外地区截至2020年2月19日COVID-19累计确诊病例数最多的51个城市的COVID-19每日新增感染率趋势进行时间序列聚类分析,并从社会经济水平、人口流动和疫情防控措施三方面进行评估。 结果:在51个城市中共识别出4种不同类别的疫情发展模式,包括高峰模式(新余)、晚发高峰模式(甘孜州)、中高峰模式(温州等13个城市)和趋势缓和稳定模式(杭州等36个城市)。4种模式以及同种模式不同城市的指标得分分布均有差异。 结论:中国各城市的COVID-19疫情发展模式差异较大,可能是受城市社会经济水平、人口流动和疫情防控措施等多方面影响。及时的卫生应急措施和城市内部人口流动控制可能影响COVID-19疫情发展模式,高风险地区人口迁入强度对COVID-19累计确诊病例数有较大影响。

关键词: 2019冠状病毒病;中国社会经济人口流动防控措施聚类分析    
Abstract:

Objective:To evaluate the impact of socioeconomic status,population mobility,prevention and control measures on the early-stage coronavirus disease 2019 (COVID-19) development in major cities of China. Methods: The rate of daily new confirmed COVID-19 cases in the 51 cities with the largest number of cumulative confirmed cases as of February 19,2020 (except those in Hubei province) were collected and analyzed using the time series cluster analysis. It was then assessed according to three aspects,that is, socioeconomic status,population mobility,and control measures for the pandemic. Results: According to the analysis on the 51 cities,4 development patterns of COVID-19 were obtained,including a high-incidence pattern (in Xinyu),a late high-incidence pattern (in Ganzi),a moderate incidence pattern (in Wenzhou and other 12 cities),and a low and stable incidence pattern (in Hangzhou and other 35 cities). Cities with different types and within the same type both had different scores on the three aspects. Conclusion: There were relatively large difference on the COVID-19 development among different cities in China,possibly affected by socioeconomic status,population mobility and prevention and control measures that were taken. Therefore,a timely public health emergency response and travel restriction measures inside the city can interfere the development of the pandemic. Population flow from high risk area can largely affect the number of cumulative confirmed cases.

Key words: Coronavirus disease 2019;China    Socioeconomic status    Population flows    Control measures    Cluster analysis
收稿日期: 2020-12-11 出版日期: 2021-05-16
CLC:  R181.2  
基金资助: 浙江大学新型冠状病毒(2019-nCoV)肺炎应急科研专项(2020XGZX003); 浙江省创新团队(2019R01007); 浙江省重点实验室(2020E10004); 浙江省自然科学基金(LEZ20H260002)
通讯作者: 朱慧     E-mail: wangsisi@zju.edu.cn;zhuhui2002@zju.edu.cn
作者简介: 王思思,硕士研究生,主要从事慢性病流行病学研究; E-mail:wangsisi@zju.edu.cn;https://orcid.org/0000-0003-2566-4578. 叶元庆,研究员,博士生导师,主要从事遗传流行病学研究; E-mail:yuanqing99@zju.edu.cn; https://orcid.org/0000-0001-5708-8961.徐小林,研究员,博士生导师,主要从事慢性病流行病学及防治、流行病学方法学研究; E-mail:xiaolin.xu@zju.edu.cn; https://orcid.org/0000-0002-8203-9878
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王思思
叶元庆
徐小林
王思聪
徐欣
袁长征
李舒
曹淑殷
李文渊
陈辰
胡可嘉
雷浩
朱慧
祝勇
吴息凤

引用本文:

王思思,叶元庆,徐小林,王思聪,徐欣,袁长征,李舒,曹淑殷,李文渊,陈辰,胡可嘉,雷浩,朱慧,祝勇,吴息凤. 基于社会经济水平、人口流动和疫情防控措施评估我国主要城市应对 2019冠状病毒病的策略[J]. 浙江大学学报(医学版), 2021, 50(1): 52-60.

WANG Sisi,YE Yuanqing,XU Xiaolin,WANG Sicong,XU Xin,YUAN Changzheng,LI Shu,CAO Shuyin,LI Wenyuan,CHEN Chen,HU Kejia,LEI Hao,ZHU Hui,ZHU Yong,WU Xifeng. Impact of socioeconomic status,population mobility and control measures on COVID-10 development in major cities of China. J Zhejiang Univ (Med Sci), 2021, 50(1): 52-60.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0028        http://www.zjujournals.com/med/CN/Y2021/V50/I1/52

城市

累计病例数

累计发病率(1/10 4

常住人口数 (10 4

人均国内生产总值 (元)

每千人医生数

重庆市

560

0.1805

3101.79

65933

2.46

浙江省温州市

504

0.5449

925.00

65055

3.07

广东省深圳市

416

0.3193

1302.66

189568

2.79

北京市

395

0.1834

2154.20

140211

5.08

广东省广州市

339

0.2274

1490.44

155491

3.62

上海市

333

0.1374

2423.78

135000

3.09

河南省信阳市

269

0.4155

647.41

36951

1.86

湖南省长沙市

242

0.2968

815.47

136920

3.78

江西省南昌市

229

0.4129

554.55

95116

2.67

黑龙江省哈尔滨市

194

0.2039

951.54

66094

2.79

安徽省合肥市

173

0.2139

808.74

97470

2.76

浙江省杭州市

169

0.1723

980.60

140180

4.58

安徽省蚌埠市

159

0.4688

339.20

50 662

2.13

河南省郑州市

156

0.1539

1013.60

101352

4.15

浙江省宁波市

156

0.1902

820.20

132603

3.17

湖南省岳阳市

156

0.2691

579.71

59165

2.62

河南省南阳市

155

0.1548

1001.36

35554

1.89

安徽省阜阳市

155

0.1889

820.72

21589

1.88

浙江省台州市

146

0.2378

613.90

79541

2.95

四川省成都市

141

0.0863

1633.00

94 782

3.77

河南省驻马店市

139

0.1975

703.66

33773

1.88

天津市

130

0.0834

1559.60

120711

2.75

江西省新余市

130

1.0955

118.67

88 500

2.20

江西省上饶市

123

0.1806

681.07

32555

1.62

陕西省西安市

120

0.1200

1000.37

85114

3.25

江西省九江市

118

0.2410

489.68

55274

2.14

安徽省亳州市

108

0.2062

523.72

24547

1.37

江西省宜春市

106

0.1902

557.32

39199

1.54

湖南省邵阳市

102

0.1384

737.05

24178

1.96

广东省珠海市

98

0.5182

189.11

159428

3.75

江苏省南京市

93

0.1102

843.62

152886

3.75

广东省东莞市

92

0.1096

839.22

98939

2.33

河南省商丘市

91

0.1242

732.53

32669

2.05

江苏省苏州市

87

0.0811

1072.17

173 765

3.07

广东省佛山市

84

0.1063

790.57

127691

2.53

安徽省安庆市

83

0.1769

469.13

41088

1.89

江苏省徐州市

79

0.0898

880.20

76915

2.93

湖南省常德市

79

0.1356

582.72

58160

2.98

湖南省株洲市

78

0.1940

402.08

65442

2.62

河南省周口市

76

0.0876

867.78

30820

2.03

江西省赣州市

76

0.0876

867.76

32429

1.73

湖南省娄底市

76

0.1933

393.18

39249

2.41

江西省抚州市

72

0.1779

404.72

34 226

1.45

福建省福州市

71

0.0917

774.00

102037

2.64

安徽省六安市

69

0.1426

483.74

26731

1.91

四川省甘孜州

67

0.5602

119.60

24 446

1.41

江苏省淮安市

66

0.1366

483.00

85418

2.72

广东省中山市

66

0.1994

331.00

110585

2.66

广东省惠州市

62

0.1233

502.77

42586

2.76

山东省青岛市

59

0.0628

939.48

128459

1.71

湖南省益阳市

59

0.1337

441.38

39937

2.53

表 1  截至2020年2月19日我国2019冠状病毒病累计病例数排名前51位城市的基本特征

省/城市

数据来源

安徽省

http://tjj.ah.gov.cn/ssah/qwfbjd/tjnj/index.html

北京市

http://202.96.40.155/nj/main/2019-tjnj/zk/indexch.htm

重庆市

http://tjj.cq.gov.cn//tjnj/2019/indexch.htm

福建省

http://tjj.fujian.gov.cn/tongjinianjian/dz2019/contents-cn.htm

广东省

http://stats.gd.gov.cn/gdtjnj/content/post_2639622.html

河南省

http://www.ha.stats.gov.cn/hntj/lib/tjnj/2019/indexce.htm

黑龙江省

http://www.hlj.stats.gov.cn/tjsj/tjnj/202001/t20200120_76425.html

湖南省

http://222.240.193.190/19tjnj/indexch.htm

江苏省

http://tj.jiangsu.gov.cn/2019/indexc.htm

江西省

http://www.jiangxi.gov.cn/2019jxtjnj/indexch.htm

山东省

http://www.stats-sd.gov.cn/tjnj/nj2019/indexch.htm

陕西省

http://tjj.shaanxi.gov.cn/upload/2020/pro/3sxtjnj/zk/indexch.htm

上海市

http://tjj.sh.gov.cn/html/sjfb/202003/1004509.html

四川省成都市

http://www.cdstats.chengdu.gov.cn/htm/detail_179930.html

四川省甘孜州

http://tjj.gzz.gov.cn/gzztjj/tjsj/201912/742e197685484d2cb93ed39008f6a4ac.shtml

天津市

http://stats.tj.gov.cn/TJTJJ434/TJGB598/TJSTJGB33/202001/t20200111_2011027.html

浙江省

http://zjjcmspublic.oss-cn-hangzhou-zwynet-d01-a.internet.cloud.zj.gov.cn

表 2  各省市统计数据来源网址
图 1  2020年1月18日至2月19日我国51个城市2019冠状病毒病疫情发展模式聚类分析结果
图 2  我国4类疫情发展模式城市12个指标得分雷达图
1 World Health Organization. Coronavirus disease (COVID- 2019) situation report[EB/OL]. (2020-08-30)[2020-09-20]. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200831-weekly-epi-update-3.pdf?sfvrsn=d7032a2a_4.
2 Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19) [EB/OL]. (2020-02-28)[2020-03-05].https://www.who.int/publications-detail/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19).
3 SAUNDERS-HASTINGS P, CRISPO J A G, SIKORA L, et al. Effectiveness of personal protective measures in reducing pandemic influenza transmission:A systematic review and meta-analysis[J]. Epidemics, 2017, 1-20.
doi: 10.1016/j.epidem.2017.04.003
4 AHMED F, ZVIEDRITE N, UZICANIN A . Effectiveness of workplace social distancing measures in reducing influenza transmission:a systematic review[J]. BMC Public Health, 2018, 18(1): 518.
doi: 10.1186/s12889-018-5446-1
5 AIELLO A E, COULBORN R M, ARAGON T J, et al. Research findings from nonpharmaceutical intervention studies for pandemic influenza and?current gaps in the research[J]. Am J Infection Control, 2010, 38(4): 251-258.
doi: 10.1016/j.ajic.2009.12.007
6 WU Z, MCGOOGAN J M . Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China[J]. JAMA, 2020, 323(13): 1239.
doi: 10.1001/jama.2020.2648
7 DENG S Q, PENG H J . Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China[J]. JCM, 2020, 9(2): 575.
doi: 10.3390/jcm9020575
8 LIANG W H, GUAN W J, LI C C, et al. Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicentre) and outside Hubei (non-epicentre):a nationwide analysis of China[J]. Eur Respir J, 2020, 55(6): 2000562.
doi: 10.1183/13993003.00562-2020
9 YANG Y,LU Q,LIU M,et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China[J/OL]. medRxiv, 2020. DOI:10.1101/2020.02.10.20021675 .
10 RAKTHANMANON T, CAMPANA B, MUEEN A, et al. Addressing big data time series:mining trillions of time series subsequences under dynamic time warping[C]. ACM Trans Knowl Discov Data, 2013, 7(3): 1-31.
doi: 10.1145/2500489
11 MONTERO P, VILAR J A . TSclust:an R package for time series clustering[J] . J Stat Soft, 2014, 62(1): 1-43.
doi: 10.18637/jss.v062.i01
12 CHINAZZI M, DAVIS J T, AJELLI M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak [J/OL]. Science, 2020, 368(6489): 395-400.
doi: 10.1126/science.aba9757
13 TIAN H, LIU Y, LI Y, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science, 2020, 368(6491): 638-642.
doi: 10.1126/science.abb6105
14 KRETZSCHMAR M, ROZHNOVA G, VAN BOVEN M . Isolation and contact tracing can tip the scale to containment of COVID-19 in populations with social distancing[J/OL]. SSRN J, 2020,
doi: 10.2139/ssrn.3562458
15 ZHOU X, WU Z, YU R, et al. Modelling-based evaluation of the effect of quarantine control by the Chinese government in the coronavirus disease 2019 outbreak[J]. Sci China Life Sci, 2020, 63(8): 1257-1260.
doi: 10.1007/s11427-020-1717-9
16 Oxford COVID-19 government response tracker. [2020-05-10].https://www.bsg.ox.ac.uk/research/research-projects/oxford-covid-19-government-response-tracker.
17 QIU Y, CHEN X, SHI W . Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China[J]. J Popul Econ, 2020, 33(4): 1127-1172.
doi: 10.1007/s00148-020-00778-2
18 SAJADI M M, HABIBZADEH P, VINTZILEOS A, et al. Temperature,humidity and latitude analysis to predict potential spread and seasonality for COVID-19[J]. SSRN J, 2020,
doi: 10.2139/ssrn.3550308
19 PAN A, LIU L, WANG C, et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan,China[J]. JAMA, 2020, 323(19): 1915.
doi: 10.1001/jama.2020.6130
20 VIBOUD C, BJ?RNSTAD O N, SMITH D L, et al. Synchrony,waves,and spatial hierarchies in the spread of influenza[J]. Science, 2006, 312(5772): 447-451.
doi: 10.1126/science.1125237
21 LIU K, AI S, SONG S, et al. Population movement,city closure in Wuhan and geographical expansion of the 2019-nCoV pneumonia infection in China in January 2020[J]. Clin Infect Dis, 2020, 71(16): 2045-2051.
doi: 10.1093/cid/ciaa422
[1] 王思聪,叶元庆,胡可嘉,雷浩,陈辰,徐小林,李文渊,袁长征,曹淑殷,王思思,李舒,贾君麟,王秦川,卞子龙,吴息凤. 基于人口流动数据研究武汉“封城”对中国 2019冠状病毒病疫情态势的影响[J]. 浙江大学学报(医学版), 2021, 50(1): 61-67.
[2] 叶元庆,雷浩,陈辰,胡可嘉,徐小林,袁长征,曹淑殷,王思思,王思聪,李舒,应智峻,贾君麟,王秦川,Sten H.VERMUND,许正平,吴息凤. 利用人口流动数据以及两阶段模型预测2019冠状病毒病流行趋势[J]. 浙江大学学报(医学版), 2021, 50(1): 68-73.
[3] 范天田,陈永灿,白钰,马凤岐,王恒苍,杨益萍,陈金旭,林雨琪. 2019冠状病毒病(COVID-19)基于推荐诊疗方案的中医用药特点分析[J]. 浙江大学学报(医学版), 2020, 49(2): 260-269.
[4] 楼昭涵 等. 义乌市消化道恶性肿瘤空间格局分析[J]. 浙江大学学报(医学版), 2017, 46(5): 537-545.
[5] 苗华,等. 联合应用基因表达谱和拷贝数变异信息探索结直肠癌分子亚型[J]. 浙江大学学报(医学版), 2014, 43(4): 420-426.