三叉式万向联轴器的结构组成简单、紧凑,安装维修便利,同步性高,传输能力大,易于热处理,加工制造成本低廉。其不仅能起到连接各个转子,传递扭矩和补偿轴向、角向、径向位移的作用,且在输入轴和输出轴存在偏转角时传输能力随偏转角增大而降低,实现平稳传动。
三叉式万向联轴器是一种新生结构,国内外学者虽只进行了初步的理论分析,但已看到了其广阔的应用前景,因此为推广应用需要对其进行深入的理论研究,尤其是在不同安装方式下的运动学、动力学分析仍缺乏系统的理论指导。国外学者Mariot和Serveto等[1-2]分析了三柱销式万向节的运动学特性与动力学特性,得出当输出轴轴线方向不变时三柱销式万向节属于等角速万向联轴器。Desmidt[3]对非等角速万向联轴器传动系统的稳定性进行了理论分析。Cai等[4]建立了三柱销式万向联轴器的简化动力学模型,对产生的轴向力的变化进行了分析。Sai等[5]将三球销式万向联轴器作为空间机构对组件间相对运动特性进行了理论分析,同时开发出一种数值分析程序模拟了套筒的法向力及轴向力,并进行了实验验证。朱拥勇等[6]采用传递矩阵法对万向联轴器传动系统进行理论分析和数值求解,得到了存在偏转角时系统的振动特性。王学锋等[7-9]利用数值仿真分析方法对滑移型万向联轴器在调心球轴承安装时进行了部分理论分析和数值求解。
三叉式万向联轴器的输出轴采用双径向轴承安装是解决三叉式万向联轴器准等角速问题的一个切实可行的方案[10]。本文研究了三叉式万向联轴器存在偏转角时,采用单径向轴承安装和双径向轴承安装时产生的附加弯矩,找出三叉式万向联轴器在安装过程中出现振动、噪声的原因,确定系统的动力学行为。
1 三叉式万向联轴器运动分析三叉式万向联轴器包括输入轴、三叉杆、输出轴、轴套、滑块组件等[10],轴套上均布有3个平行的导向槽,轴套的一端连接输入轴,另一端通过3组滑块组件连接三叉杆,三叉杆中心与输出轴固定连接[11-12],其三维结构如图 1所示。
![]() |
1—输入轴;2—轴套;3—滑块组件;4—三叉杆;5—输出轴 图 1 三叉式万向联轴器的三维结构图 Fig.1 The three-dimensional structure diagram of the trigeminal universal joint |
建立采用单径向轴承和双径向轴承安装三叉式万向联轴器输出轴时系统的运动简图, 如图 2、图 3所示。
![]() |
图 2 采用单径向轴承安装时三叉式万向联轴器的运动简图 Fig.2 The kinematic diagram of the trigeminal universal joint installed by the single radial bearing |
![]() |
图 3 采用双径向轴承安装时三叉式万向联轴器的运动简图 Fig.3 The kinematic diagram of the trigeminal universal joint installed by twin radial bearing |
采用空间机构坐标变换技术[13-16]建立三叉式万向联轴器输入轴、输出轴的运动关系方程,推导出系统存在偏转角时输出轴的运动方程[17-18]。φi为输入轴转角,φo为输出轴转角,输入轴和输出轴之间的偏转角为γ,得到单径向轴承安装输出轴时系统的转角差方程为:
$ {\varphi _{\rm{o}}}-{\varphi _{\rm{i}}} \approx \frac{\lambda }{{2L}}{\rm{ta}}{{\rm{n}}^2}\frac{\gamma }{2}{\rm{tan}}\gamma {\rm{cos}}3{\varphi _{\rm{i}}} $ | (1) |
双径向轴承安装输出轴时系统的转角差为:
$ {\varphi _{\rm{o}}}-{\varphi _{\rm{i}}} = 0 $ | (2) |
当采用单径向轴承安装三叉式万向联轴器的输出轴时,系统出现了转角差,可见该安装方式下联轴器传动不属于等角速传动,但因为转角差值很小,特别是当存在微小的偏转角时,转角差几乎为零。所以,输出轴采用单径向轴承安装时三叉式万向联轴器输出轴绕中心轴做微小的圆锥运动,这时的传动可以称为准等角速传动。当采用双径向轴承安装三叉式万向联轴器的输出轴时,未出现转角差,输出轴绕中心轴做微小的圆柱运动,表明采用这种安装方式的三叉式万向联轴器具有等角速传动特性。
2 三叉式万向联轴器附加弯矩三叉式万向联轴器的输入轴和输出轴之间的偏转角为γ,假设在输入轴Wi上作用的扭矩为Ti,作用在输出轴Wo上的扭矩为To,当γ≠0时,其扭矩的合矢量一般不等于零,因而在输入和输出轴上出现附加弯矩。当给定输入转矩Ti后,便可求出三叉式万向联轴器输入轴及输出轴某横截面S1和S2上作用的附加弯矩分量U1,V1和U2,V2,如图 4所示。
![]() |
图 4 三叉式万向联轴器的附加弯矩示意图 Fig.4 Additional bending moment diagram of the trigeminal universal joint |
由于外部只作用纯扭矩,所以作用在横截面S1和S2上的各力矩由三叉式万向联轴器的平衡条件可知:
$ \left\{ \begin{array}{l} {X_{\rm{o}}}:{\mathit{\boldsymbol{U}}_1} + {\mathit{\boldsymbol{U}}_2} = 0\\ {Y_{\rm{o}}}:-{\mathit{\boldsymbol{T}}_{\rm{i}}}{\rm{sin}}\gamma + {\mathit{\boldsymbol{V}}_1}{\rm{cos}}\gamma + {\mathit{\boldsymbol{V}}_2} = 0\\ {Z_{\rm{o}}}:{\mathit{\boldsymbol{T}}_{\rm{i}}}cos\gamma + {\mathit{\boldsymbol{V}}_1}sin\gamma + {\mathit{\boldsymbol{T}}_{\rm{o}}} = 0 \end{array} \right. $ | (3) |
从而得到:
$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{V}}_1} = \frac{{-{\mathit{\boldsymbol{T}}_{\rm{o}}}-{\mathit{\boldsymbol{T}}_{\rm{i}}}{\rm{cos}}\gamma }}{{{\rm{sin}}\gamma }}\\ {\mathit{\boldsymbol{V}}_2} = {\mathit{\boldsymbol{T}}_{\rm{i}}}{\rm{sin}}\gamma + \frac{{{\mathit{\boldsymbol{T}}_{\rm{o}}} + {\mathit{\boldsymbol{T}}_{\rm{i}}}{\rm{cos}}\gamma }}{{{\rm{sin}}\gamma }}{\rm{cos}}\gamma \end{array} \right. $ | (4) |
根据虚位移原理确定U1和U2,假想将三叉式万向联轴器输出轴Wo固定,而将输入轴Wi绕OoZo轴转过dγ角,并绕自身转过dβ角,此时由于矢量V1和Ti与dγ互相垂直,故力矩Ti和V1对dγ角所作的功为零。因为只有U1作功,其大小为Ti·dβ。在不考虑机械损失的情况下,总的虚功和为0,即-U1·dγ+Ti·dβ=0,所以:
$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{U}}_1} = {\mathit{\boldsymbol{T}}_{\rm{i}}}\cdot\frac{{{\rm{d}}\beta }}{{{\rm{d}}\gamma }}\\ {\mathit{\boldsymbol{U}}_2} =-{\mathit{\boldsymbol{T}}_{\rm{i}}}\cdot\frac{{{\rm{d}}\beta }}{{{\rm{d}}\gamma }} \end{array} \right. $ | (5) |
输出轴采用单径向轴承安装时,有:
$ \frac{{{\rm{d}}{\varphi _{\rm{o}}}}}{{{\rm{d}}{\varphi _{\rm{i}}}}} = \frac{{{\omega _{\rm{o}}}}}{{{\omega _{\rm{i}}}}} = 1-\frac{{3\lambda }}{{2L}}{\rm{ta}}{{\rm{n}}^2}\frac{\gamma }{2}{\rm{tan}}\gamma {\rm{sin}}3{\varphi _{\rm{i}}} $ | (6) |
$ {\varphi _{\rm{o}}} = {\varphi _{\rm{i}}} + \frac{\lambda }{{2L}}{\rm{ta}}{{\rm{n}}^2}\frac{\gamma }{2}{\rm{tan}}\gamma {\rm{cos}}3{\varphi _{\rm{i}}} $ | (7) |
在不计摩擦损失的情况下,三叉式万向联轴器输入扭矩Ti和输出扭矩To在两轴转过dφ时所作的功相等,在任一时刻均有:
$ {\boldsymbol{T}_{\rm{o}}}\cdot{\rm{d}}{\varphi _{\rm{o}}} =-{\boldsymbol{T}_{\rm{i}}}\cdot{\rm{d}}{\varphi _{\rm{i}}} $ | (8) |
$ \frac{{{\boldsymbol{T}_{\rm{o}}}}}{{{\boldsymbol{T}_{\rm{i}}}}} = \frac{{-2L}}{{2L-3\lambda {\rm{ta}}{{\rm{n}}^2}\gamma 2{\rm{tan}}\gamma {\rm{cos}}3{\varphi _{\rm{i}}}}} $ | (9) |
代入式 (4),得:
$ {\boldsymbol{V}_1} = \frac{{2L({\rm{tan}}-{\rm{sin}}\gamma ) + 3\lambda {\rm{ta}}{{\rm{n}}^2}\gamma 2{\rm{tan}}\gamma {\rm{sin}}\gamma {\rm{sin}}3{\varphi _{\rm{i}}}}}{{2L{\rm{sin}}\gamma {\rm{tan}}\gamma + 3\lambda {\rm{ta}}{{\rm{n}}^2}\gamma 2{\rm{ta}}{{\rm{n}}^2}\gamma {\rm{sin}}\gamma {\rm{sin}}3{\varphi _{\rm{i}}}}}\cdot{\boldsymbol{T}_{\rm{i}}} $ | (10) |
根据输出轴采用单径向轴承安装时的转角误差公式可以得到:
$ \begin{array}{l} \frac{{{\rm{d}}\beta }}{{{\rm{d}}\gamma }} = \frac{{{\rm{d}}\left( {\frac{\lambda }{{2L}}{\rm{ta}}{{\rm{n}}^2}\frac{\gamma }{2}{\rm{tan}}\gamma {\rm{cos}}3{\varphi _{\rm{i}}}} \right)}}{{{\rm{d}}\gamma }} = \\ \frac{{\lambda {\rm{cos}}3{\varphi _{\rm{i}}}{\rm{tan}}\gamma {\rm{sin}}\gamma (2 + {\rm{sec}}\gamma )}}{{2L{{(1 + {\rm{cos}}\gamma )}^2}}} \end{array} $ | (11) |
将式 (11) 代入式 (5),得:
$ {\boldsymbol{U}_1} = \frac{{\lambda {\rm{cos}}3{\varphi _{\rm{i}}}{\rm{tan}}\gamma {\rm{sin}}\gamma (2 + {\rm{sec}}\gamma )}}{{2L{{(1 + {\rm{cos}}\gamma )}^2}}}\cdot{\boldsymbol{T}_{\rm{i}}} $ | (12) |
将V1和U1合成后得到采用单径向轴承安装时输入轴的附加弯矩为:
$ \begin{array}{l} {\boldsymbol{M}_1} = \sqrt {\boldsymbol{V}_1^2 + \boldsymbol{U}_1^2} = {\boldsymbol{T}_{\rm{i}}}\cdot\\ \sqrt {{{\left[ {\frac{{2L({\rm{tan}}\gamma - {\rm{sin}}\gamma ) + 3\lambda {\rm{ta}}{{\rm{n}}^2}\gamma 2{\rm{tan}}\gamma {\rm{sin}}\gamma {\rm{sin}}3{\varphi _{\rm{i}}}}}{{2L{\rm{sin}}\gamma {\rm{tan}}\gamma + 3\lambda {\rm{ta}}{{\rm{n}}^2}\gamma 2{\rm{ta}}{{\rm{n}}^2}\gamma {\rm{sin}}\gamma {\rm{sin}}3{\varphi _{\rm{i}}}}}} \right]}^2} + {{\left[ {\frac{{\lambda {\rm{cos}}3{\varphi _{\rm{i}}}{\rm{tan}}\gamma {\rm{sin}}\gamma (2 + {\rm{sec}}\gamma )}}{{2L{{(1 + {\rm{cos}}\gamma )}^2}}}} \right]}^2}} \end{array} $ | (13) |
假设输入扭矩为200 N·m,λ=30 mm,L=600 mm,γ=0°~40°,在输入轴旋转1个周期内,通过数值分析得到采用单径向轴承安装三叉式万向联轴器输出轴时输入轴上的附加弯矩如图 5所示。
![]() |
图 5 输出轴采用单径向轴承安装时输入轴上的附加弯矩 Fig.5 Additional bending moment of the input shaft in the situation of output shaft installed by single radial bearing |
从图 5可以看出,偏转弯矩不为零,附加弯矩作用在矢量V1和U1合成矢量与联轴器轴线构成的平面内,且1个运动周期内附加弯矩的波动频率是输入轴的3倍,呈正弦曲线变化,附加弯矩的变化趋势随偏转角的增大呈直线上升。
2.2 双径向轴承安装时的附加弯矩系统输出轴采用双径向轴承安装,在不计摩擦损失的条件下,联轴器输入扭矩Ti和输出扭矩To在两轴转过dφ时所作的功相等,即Ti·dφi=-To·dφo,由于dφi=dφo所以Ti=-To。因此采用双径向轴承安装三叉式万向联轴器输出轴时,得到:
$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{V}}_1} = \frac{{-{\mathit{\boldsymbol{T}}_i}-{\mathit{\boldsymbol{T}}_i}{\rm{cos}}\gamma }}{{{\rm{sin}}\gamma }} = {\mathit{\boldsymbol{T}}_i}{\rm{tan}}\frac{\gamma }{2}\\ {\mathit{\boldsymbol{V}}_2} = {\mathit{\boldsymbol{T}}_i}{\rm{sin}}\gamma + \frac{{{\mathit{\boldsymbol{T}}_i} + {\mathit{\boldsymbol{T}}_i}{\rm{cos}}\gamma }}{{{\rm{sin}}\gamma }}{\rm{cos}}\gamma = {\mathit{\boldsymbol{T}}_i}{\rm{tan}}\frac{\gamma }{2} \end{array} \right. $ | (14) |
根据三叉式万向联轴器输出轴采用双径向轴承安装时的等角速传动特性,当偏转角γ发生变化时,转角差恒为零,即dβ/dγ=0,因此:
$ \left\{ \begin{array}{l} {\boldsymbol{U}_1} = 0\\ {\boldsymbol{U}_2} = 0 \end{array} \right. $ | (15) |
所以当采用双径向轴承安装三叉式万向联轴器输出轴时,三叉式万向联轴器的附加弯矩位于输入轴和输出轴所在的平面内,弯矩矢量V1和V2分别垂直于输入、输出轴,偏转弯矩U1和U2等于零。
将V1和U1合成后得到采用双径向轴承安装时输入轴的附加弯矩:
$ {\boldsymbol{M}_1} = \sqrt {\boldsymbol{V}_1^2 + \boldsymbol{U}_1^2} = {\boldsymbol{T}_{\rm{i}}}{\rm{tan}}\frac{\gamma }{2} $ | (16) |
假设输入扭矩为200 N·m,λ=30 mm,L=600 mm,γ=0°~40°,在输入轴旋转1个周期内,通过数值分析得到采用双径向轴承安装时输入轴的附加弯矩如图 6所示。
![]() |
图 6 输出轴采用双径向轴承安装时输入轴上的附加弯矩 Fig.6 Additional bending moment of the input shaft in the situation of output shaft installed by twin radial bearing |
从图 6可以看出,采用双径向轴承安装三叉式万向联轴器的输出轴时,联轴器的附加弯矩随偏转角的增大呈线性升高,在输入轴旋转的1个周期内未出现波动。
比较输出轴采用单径向轴承和双径向轴承两种安装方式时三叉式万向联轴器的附加弯矩,可以发现:采用双径向轴承安装时,联轴器的附加弯矩矢量作用在联轴器两轴线构成的平面内,偏转弯矩为零,附加弯矩随偏转角的增大而逐渐升高,未出现波动;而在采用单径向轴承安装时,联轴器的附加弯矩作用在矢量V1和U1的合矢量与联轴器轴线构成的平面内,存在偏转弯矩,且1个运动周期内附加弯矩的波动频率是输入轴的3倍,呈正弦曲线变化,且附加弯矩的变化趋势随偏转角的增大呈直线上升。
3 结论1) 研究发现三叉式万向联轴器输出轴在采用单径向轴承安装和双径向轴承安装时系统均产生附加弯矩。采用单径向轴承安装时,存在偏转弯矩,且1个运动周期内附加弯矩的波动频率是输入轴的3倍,呈正弦曲线变化,且附加弯矩的变化趋势随偏转角的增大呈直线上升;采用双径向轴承安装时,偏转弯矩为零,附加弯矩随偏转角的增大而逐渐升高,未出现波动。
2) 采用单径向轴承安装和双径向轴承安装时,三叉式万向联轴器上均产生附加弯矩,从而使传动系统产生振动效应。本文对在不同安装方式下联轴器的附加弯矩进行分析,为将来设计和使用三叉式万向联轴器提供重要的理论指导和参考价值,有望加速我国在汽车工业、橡胶工业、纺织工业、化工机械工业等相关领域内联轴器的更新换代,从而取得重大的经济效益和社会效益。
[1] | MARIOT J P, NEVEZ K, BARBEDETTE B. Tripod and ball joint automotive transmission kinetostatic model including friction[J]. Multibody System Dynamics, 2004, 11(2): 127–145. DOI:10.1023/B:MUBO.0000025412.15396.69 |
[2] | SERVETO S, MARIOT J P, DIABY M. Modelling and measuring the axial force generated by tripod joint of automotive drive-shaft[J]. Multibody System Dynamics, 2008, 19(3): 209–226. DOI:10.1007/s11044-007-9091-1 |
[3] | DESMIDT H A, KANG W W. Stability of segmented supercritical driveline with non-constant velocity couplings subjected to misalignment and torque[J]. Journal of Sound and Vibration, 2004, 277(4): 895–918. |
[4] | CAI Q C, LEE K H, SONG W L, et al. Simplified dynamics model for axial force in tripod constant velocity joint[J]. International Journal of Automotive Technology, 2012, 13(5): 751–757. DOI:10.1007/s12239-012-0074-8 |
[5] | SAI J S, KANG T W, KIM C M. Experimental study of the characteristics of idle vibrations that result from axial forces and the spider positions of constant velocity joints[J]. International Journal of Automotive Technology, 2010, 11(3): 355–361. DOI:10.1007/s12239-010-0044-y |
[6] |
朱拥勇, 王德石, 冯昌林.
万向铰驱动的偏斜转子系统传递力矩分析[J]. 海军工程大学学报, 2010, 22(5): 5–9.
ZHU Yong-yong, WANG De-shi, FENG Chang-lin. Analysis of transmitted moment of misaligned rotor system driven by universal joint[J]. Journal of Naval Universal of Engineering, 2010, 22(5): 5–9. |
[7] |
王学锋, 常德功, 王江忠.
滑移型三叉式联轴器运动学建模[J]. 农业机械学报, 2009, 40(9): 7–11.
WANG Xue-feng, CHANG De-gong, WANG Jiang-zhong. Kinematic model of tripod sliding universal joints[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(9): 7–11. |
[8] |
王学锋, 常德功.
滑移型三叉式联轴器抗磨损结构及数学建模[J]. 中国机械工程, 2009, 20(5): 538–541.
WANG Xue-feng, CHANG De-gong. Anti-wear structure of tripod sliding universal joints and its mathematics modeling[J]. China Mechanical Engineering, 2009, 20(5): 538–541. |
[9] | WANG Xue-feng, CHANG De-gong. Kinematic and dynamic analyses of tripod sliding universal joints[J]. Journal of Mechanical Design, 2009, 131(6): 061011. DOI:10.1115/1.3125882 |
[10] |
常德功, 李松梅.
双径向轴承安装三叉杆滑块式万向联轴器机构的运动分析[J]. 机械工程学报, 2015, 51(13): 218–226.
CHANG De-gong, LI Song-mei. Kinematic analysis of the trigeminal sliding universal joint mechanism installed twin radial bearings[J]. Journal of Mechanical Engineering, 2015, 51(13): 218–226. |
[11] |
李松梅, 常德功, 杨福芹.
三叉杆滑块式万向联轴器的传输能力分析[J]. 青岛科技大学学报 (自然科学版), 2016, 37(2): 105–109.
LI Song-mei, CHANG De-gong, YANG Fu-qin. Transmission capacity analysis of the tripod sliding universal joint[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2016, 37(2): 105–109. |
[12] |
常德功, 邵晨, 李松梅. 一种减振型三叉杆倾斜滑块式等角速万向联轴器: ZL201320595302. 9[P]. 2014-03-12.
CHANG De-gong, SHAO Chen, LI Song-mei. A damping type of the tripod sliding constant universal joint: ZL201320595302.9[P]. 2014-03-12. |
[13] |
刘善增, 余跃庆, 侣国宁, 等.
3自由度并联机器人的运动学和动力学分析[J]. 机械工程学报, 2009, 45(8): 11–17.
LIU Shan-zeng, YU Yue-qing, SI Guo-ning, et al. Kinematic and dynamic analysis of a three-degree of freedom parallel manipulator[J]. Journal of Mechanical Engineering, 2009, 45(8): 11–17. |
[14] |
张启先.
空间机构的分析与综合[M]. 北京: 机械工业出版社, 1984: 77-80.
ZHANG Qi-xian. Analysis and synthesis of space agencies[M]. Beijing: China Machine Press, 1984: 77-80. |
[15] |
王鸿恩, 罗义艮, 贺明.
三维空间多节万向传动轴扭振的分析计算[J]. 机械工程学报, 2000, 36(6): 37–41.
WANG Hong-en, LUO Yi-gen, HE Ming. The torsional vibration of the three-dimensional multi-section propeller shaft[J]. Journal of Mechanical Engineering, 2000, 36(6): 37–41. |
[16] |
杨福芹. 三叉杆滑块式等角速万向联轴联轴器的理论研究[D]. 上海: 上海大学机电工程学院, 2010: 14-17.
YANG Fu-qian. Theory research of tripod constant velocity joints[D]. Shanghai: Shanghai University, College of Electromechanical Engineering, 2010: 14-17. |
[17] |
常德功, 庞峰, 邹玉静.
三叉杆滑移式万向联轴器的动力学分析[J]. 机械科学与技术, 2004, 23(3): 284–285.
CHANG De-gong, PANG Feng, ZOU Yu-jing. Dynamics analysis of the tripod sliding universal coupling[J]. Mechanical Science and Technology, 2004, 23(3): 284–285. |
[18] | WATANABE K, KAWAKASTU T, NAKAO S. Kinematic and static analyses of tripod constant velocity joints of the spherical end spider type[J]. Journal of Mechanical Design, 2005, 127(6): 1137–1144. DOI:10.1115/1.1909205 |