动态融合蚁群算法与遗传算法的路径规划方法研究
车健波,唐东林,何媛媛,胡远遥,卢炳盛,张俊辉

Research on path planning method based on dynamic fusion of ant colony optimization and genetic algorithm
Jianbo CHE,Donglin TANG,Yuanyuan HE,Yuanyao HU,Bingsheng LU,Junhui ZHANG
表6 不同环境下各算法的路径规划性能对比
Table 6 Comparison of path planning performance of various algorithms in different environments
性能指标算法仿真地图
1234
路径长度Dijkstra32.14232.72334.04231.556
A*30.38531.55632.14230.971
PSO29.79930.38531.97128.627
DACO-GA28.64129.59430.02727.800
转弯次数Dijkstra66105
A*7966
PSO7768
DACO-GA4332
总转弯角度/(°)Dijkstra270.000270.000540.000225.000
A*315.000450.000270.000315.000
PSO315.000315.000315.000360.000
DACO-GA137.361137.064143.97326.565
平滑度Dijkstra0.1750.1750.0960.203
A*0.1530.1130.1750.154
PSO0.1530.1540.1540.137
DACO-GA0.2940.2950.2850.683