基于机器学习的混凝土3D打印沉积线状态优化
|
马宗方,戴溢阳,贺静,宋琳,刘超
|
Machine learning-based optimization of deposition line state in concrete 3D printing
|
Zongfang MA,Yiyang DAI,Jing HE,Lin SONG,Chao LIU
|
|
表4 不同机器学习模型的分类预测性能比较 |
Table 4 Comparison of classification prediction performance of different machine learning models |
|
模型 | 平均准确率/平均召回率/平均F1值 | 精度/% |
---|
类别0 | 类别1 | 类别2 | 类别3 | 类别4 |
---|
BWO-SVM | 0.95/0.87/0.90 | 0.75/0.88/0.83 | 0.93/0.90/0.91 | 0.88/0.90/0.89 | 0.87/0.89/0.97 | 91.12 | BWO-SVM-AdaBoost | 1.00/0.98/0.99 | 0.79/0.92/0.85 | 0.94/0.89/0.92 | 1.00/0.96/0.98 | 0.89/1.00/0.94 | 95.19 | SVM | 0.90/0.85/0.87 | 0.73/0.84/0.82 | 0.86/0.81/0.84 | 0.82/0.89/0.85 | 0.87/0.89/0.84 | 85.57 | DNN1 | 0.81/0.94/0.84 | 0.70/0.70/0.70 | 0.81/0.72/0.76 | 0.79/1.00/0.88 | 1.00/0.94/0.97 | 88.25 | DNN2 | 0.83/0.88/0.86 | 0.71/0.62/0.67 | 0.82/0.75/0.78 | 0.70/0.75/0.71 | 0.93/0.95/0.94 | 83.25 | LR | 0.85/0.98/0.91 | 0.50/0.57/0.55 | 0.70/0.83/0.75 | 0.50/0.12/0.25 | 0.83/0.83/0.83 | 73.10 | DT | 0.79/0.92/0.85 | 0.47/0.39/0.42 | 0.74/0.65/0.69 | 0.64/0.60/0.62 | 0.67/0.75/0.71 | 70.19 | RF | 0.88/0.94/0.92 | 0.67/0.57/0.63 | 0.77/0.76/0.76 | 0.63/0.69/0.65 | 0.90/0.82/0.85 | 80.12 |
|
|
|