整机和系统设计 |
|
|
|
|
基于树莓派和视觉图像的钻井振动筛倾角调节系统 |
侯勇俊1,2( ),贾文俊1,刘博文3,吴先进4 |
1.西南石油大学 机电工程学院,四川 成都 610500 2.石油天然气装备技术四川省科技资源共享服务平台,四川 成都 610500 3.中国石油天然气股份有限公司西南油气田分公司 成都天然气化工总厂,四川 成都 610213 4.宝石机械成都装备制造分公司,四川 成都 610052 |
|
Inclination angle adjustment system for shale shaker based on Raspberry Pi and visual image |
Yongjun HOU1,2( ),Wenjun JIA1,Bowen LIU3,Xianjin WU4 |
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China 2.Oil and Gas Equipment Technology Sharing and Service Platform of Sichuan Province, Chengdu 610500, China 3.Chengdu Natural Gas Chemical Plant, Southwest Oil & Gasfeild Company of PetroChina Company Limited, Chengdu 610213, China 4.BOMCO Chengdu Equipment Manufacturing Company, Chengdu 610052, China |
引用本文:
侯勇俊,贾文俊,刘博文,吴先进. 基于树莓派和视觉图像的钻井振动筛倾角调节系统[J]. 工程设计学报, 2024, 31(2): 254-262.
Yongjun HOU,Wenjun JIA,Bowen LIU,Xianjin WU. Inclination angle adjustment system for shale shaker based on Raspberry Pi and visual image[J]. Chinese Journal of Engineering Design, 2024, 31(2): 254-262.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.147
或
https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I2/254
|
1 |
高向前.钻井新装备、新工具现状及进展[EB/OL].(2014-05-11)[2023-02-18].. GAO X Q. Status and progress of new drilling equipment and new tools[EB/OL]. (2014-05-11)[2023-02-18]. .
|
2 |
王臣,王皓,代炳晓,等.钻井液固相控制系统的信息化与自动化设计及应用[J].设备管理与维修,2021(3):112-113. WANG C, WANG H, DAI B X, et al. Informatization and automation design and application of drilling fluid solid phase control system[J]. Plant Maintenance Engneering, 2021(3): 112-113.
|
3 |
河北北钻石油钻采设备有限公司.北钻固控设备智能振动筛控制系统现场工作视频[EB/OL].(2023-02-01)[2023-02-18].. Hebei BZ Solids Control Co., Ltd. BZ intelligent shale shaker system working video[EB/OL]. (2023-02-01)[2023-02-18]. .
|
4 |
SUN Y N, XUE B, ZHANG M J, et al. Evolving deep convolution neural networks for image classification[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 394-407.
|
5 |
RABABAAH A R. Deep learning of human posture image classification using convolutional neural networks[J]. International Journal of Computing Science and Mathematics, 2022, 15(3): 273-288.
|
6 |
王美玉,田乔.迁移学习用于电磁目标识别[J].太赫兹科学与电子信息学报,2021,19(4):556-561. doi:10.11805/TKYDA2021214 WANG M Y, TIAN Q. Transfer learning for electromagnetic target recognition[J]. Journal of Terahertz Science and Electronic Information Technology, 2021, 19(4): 556-561.
doi: 10.11805/TKYDA2021214
|
7 |
MIAO R, JIANG Z, ZHOU Q Y, et al. Online inspection of narrow overlap weld quality using two-stage convolution neural network image recognition[J]. Machine Vision & Applications, 2021, 32(1): 1-22.
|
8 |
KUCHIBHOTLA S, VOONNA C, PENKI R P, et al. Analysis of facial emotion recognition for image and video data using convolution neural networks[C]//6th International Conference on Electronics, Communication and Aerospace Technology. Coimbatore, Dec. 1-3, 2022.
|
9 |
ZHANG J Q, SUN Y, GUO L, et al. A new bearing fault diagnosis method based on modified convolutional neural networks[J]. Chinese Journal of Aeronautics, 2020, 33(2): 439-447.
|
10 |
NOHA E H, AHMED S, WALID E S, et al. Classification of retinal images based on convolutional neural network[J]. Microscopy Research and Technique, 2021, 84(3): 394-414.
|
11 |
赵桐,雷保珍,王训伟,等.基于迁移学习和特征重用的MIM齿轮缺陷检测[J].传感器与微系统,2021,40(10):129-131,135. ZHAO T, LEI B Z, WANG X W, et al. MIM gear defect detection based on transfer learning and feature reuse[J]. Transducer and Microsystem Technologies, 2021, 40(10): 129-131, 135.
|
12 |
李长齐,王菡,罗昊.基于树莓派的齿轮表面缺陷检测系统设计[J].仪表技术与传感器,2022(3):109-113. doi:10.3969/j.issn.1002-1841.2022.03.021 LI C Q, WANG H, LUO H. Design of gear surface defect detection system based on Raspberry Pi[J]. Instrument Technique and Sensor, 2022(3): 109-113.
doi: 10.3969/j.issn.1002-1841.2022.03.021
|
13 |
李民赞,任新建,杨玮,等.基于树莓派的农田表土层土壤容重检测系统研究[J].农业机械学报,2021,52():329-335,376. doi:10.6041/j.issn.1000-1298.2021.S0.042 LI M Z, REN X J, YANG W, et al. Soil bulk density detection system of framland topsoil based on Raspberry Pi[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(): 329-335, 376.
doi: 10.6041/j.issn.1000-1298.2021.S0.042
|
14 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60(6): 84-90.
|
15 |
马燚松.钻井液振动筛的维护使用[J].西部探矿工程,2018,30(5):79-81,86. doi:10.3969/j.issn.1004-5716.2018.05.027 MA Y S. Maintenance and use of drilling shale shaker[J]. West-China Exploration Engineering, 2018, 30(5): 79-81, 86.
doi: 10.3969/j.issn.1004-5716.2018.05.027
|
16 |
郭强强.一种开架式水下作业机器人的设计与实现[D].南京:南京信息工程大学,2019. GUO Q Q. Design and implementation of an open frame underwater operation robot[D]. Nanjing: Nanjing University of Information Science and Technology, 2019.
|
17 |
王晓.低成本智能数字式显微镜的搭建[D].南京:南京大学,2021. WANG X. Construction of low cost “smart” microscope[D]. Nanjing: Nanjing University, 2021.
|
18 |
张杰飞.基于OpenCV的焊缝图像处理研究[D].哈尔滨:哈尔滨理工大学,2019. ZHANG J F. Research on weld image processing based on OpenCV[D]. Harbin: Harbin University of Science and Technology, 2019.
|
19 |
龙满生,欧阳春娟,刘欢,等.基于卷积神经网络与迁移学习的油茶病害图像识别[J].农业工程学报,2018,34(18):194-201. doi:10.11975/j.issn.1002-6819.2018.18.024 LONG M S, OUYANG C J, LIU H, et al. Image recognition of camellia oleifera diseases based on convolutional neural network and transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 194-201.
doi: 10.11975/j.issn.1002-6819.2018.18.024
|
20 |
HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4): 212-223.
|
21 |
KUMAR S P. Identification of wheat tiller based on AlexNet-feature fusion[J]. Multimedia Tools and Applications, 2022, 81(6): 8309-8316.
|
22 |
张瑞青,李张威,郝建军,等.基于迁移学习的卷积神经网络花生荚果等级图像识别[J].农业工程学报,2020,36(23):171-180. doi:10.11975/j.issn.1002-6819.2020.23.020 ZHANG R Q, LI Z W, HAO J J, et al. Image recognition of peanut pod grades based on transfer learning with convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 171-180.
doi: 10.11975/j.issn.1002-6819.2020.23.020
|
23 |
张安安,黄晋英,冀树伟,等.基于卷积神经网络图像分类的轴承故障模式识别[J].振动与冲击,2020,39(4):165-171. doi:10.16652/j.issn.1004-373x.2020.17.016 ZHANG A A, HUANG J Y, JI S W, et al. Bearing fault pattern recognition based on image classification with CNN[J]. Journal of Vibration and Shock, 2020, 39(4): 165-171.
doi: 10.16652/j.issn.1004-373x.2020.17.016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|