Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (5): 651-664    DOI: 10.3785/j.issn.1006-754X.2022.00.061
整机和系统设计     
基于PLC的液体培养基自动制备系统设计
林子欣1(),宗望远1,2,杨方1,2(),汪方奎3
1.华中农业大学 工学院,湖北 武汉 430070
2.农业农村部长江中下游农业装备重点试验室,湖北 武汉 430070
3.农业微生物学国家重点实验室,湖北 武汉 430070
Design of automatic preparation system of liquid culture medium based on PLC
Zi-xin LIN1(),Wang-yuan ZONG1,2,Fang YANG1,2(),Fang-kui WANG3
1.College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
2.Key Laboratory of Agricultural Equipment in the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
3.State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China
 全文: PDF(5052 KB)   HTML
摘要:

针对液体培养基人工制备过程低效且目前国内外缺乏具有完整流程的液体培养基自动制备系统的问题,开发了一套基于可编程逻辑控制器(programmable logic controller, PLC)的液体培养基自动制备系统,其选用动作与感知层、传输层和应用层相结合的架构体系,由进料子系统、出料子系统和控制子系统组成。该系统以PLC、MCGS(monitor and control generated system,监视与控制通用系统)触摸屏、传感器和执行设备组合的方式,实现基于培养基配方的组分全自动选择和配比,在线pH监控和溶解氧(dissolved oxygen, DO)监测,以及全自动清洗、过滤、混匀和分装,完成液体培养基的自动配制。同时,监控数据可实时采集和图形化显示,且全流程可回溯、可存储。针对系统的误差,基于试验数据获得误差模型后通过预测确定误差修正量。经实际测试与修正,所设计系统制备液体培养基的相对误差在0.336%以下,重复性误差在0.274%以下,pH的最大控制误差为±0.18,pH和DO的最大测量误差分别为±0.04和±1%,能够满足液体培养基的制备需求。研究结果对全流程自动化液体培养基制备系统的开发有一定的参考意义。

关键词: 液体培养基自动制备可编程逻辑控制器误差修正    
Abstract:

Aiming at the problems of low efficiency of manual preparation process of liquid culture medium and lack of automatic preparation system of liquid culture medium with complete process at home and abroad, an automatic preparation system of liquid culture medium based on programmable logic controller (PLC) was developed, which used the architecture that combined with action and perception layer, transmission layer and application layer, and consisted of feeding subsystem, discharging subsystem and control subsystem. The system realized the automatic selection and proportion of components based on the culture medium formula, online pH monitoring and dissolved oxygen (DO) monitoring, as well as the automatic cleaning, filtering, mixing and subpackaging of liquid culture medium through the combination of PLC, MCGS (monitor and control generated system) touch screen, sensors and execution equipment. At the same time, the monitoring data could be collected in real time and displayed graphically, and its whole process could be traced and stored. For the system error, the error model was obtained based on the test data, and the error correction was determined through prediction. Through actual test and correction, the relative error of the designed system for preparing liquid culture medium was below 0.336%, the repeatability error was below 0.274%, the maximum control error of pH was ±0.18, the maximum measurement error of pH and DO was ±0.04 and ±1%, which met the preparation requirements of liquid culture medium. The research results have certain reference significance for the development of the whole process automatic liquid medium preparation system.

Key words: liquid culture medium    automatic preparation    programmable logic controller    error correction
收稿日期: 2021-12-01 出版日期: 2022-11-02
CLC:  TH 89  
基金资助: 湖北省技术创新专项(2018AFA166)
通讯作者: 杨方     E-mail: linzixin@webmail.hzau.edu.cn;yangfang@mail.hzau.edu.cn
作者简介: 林子欣(1998—),男,湖北黄冈人,硕士生,从事现代农业装备研究,E-mail:linzixin@webmail.hzau.edu.cnhttps://orcid.org/0000-0001-6510-9611
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林子欣
宗望远
杨方
汪方奎

引用本文:

林子欣,宗望远,杨方,汪方奎. 基于PLC的液体培养基自动制备系统设计[J]. 工程设计学报, 2022, 29(5): 651-664.

Zi-xin LIN,Wang-yuan ZONG,Fang YANG,Fang-kui WANG. Design of automatic preparation system of liquid culture medium based on PLC[J]. Chinese Journal of Engineering Design, 2022, 29(5): 651-664.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.061        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I5/651

图1  液体培养基自动制备系统工艺流程0,1,2,3,4,5,6,7,X—切换阀和高压阀通道口;①—0.45 μm过滤器;②—0.20 μm过滤器;③—0.22 μm过滤器。
图2  液体培养基自动制备系统架构
设备厂家及型号数量主要参数和用途通信方式
PLC

西门子

S7-200 SMART SR30

5数据采集、传输和设备控制

RS485

TCP/IP1)

MCGS触摸屏

昆仑通态

TPC1561Hi

1人机交互界面

RS485/232

TCP/IP

20 mL立式注射泵

润泽流体

MiNi SY-04

8

规格:20 mL

最小进样精度:2.083 3 μL

RS485
50 mL立式注射泵

润泽流体

定制

2

规格:50 mL

最小进样精度:8.196 7 μL

RS485
多通道切换阀

润泽流体

SV-06

24

通道数:8

通道直径:1.2 mm

RS485
高压阀

润泽流体

Mrv-01B

5

通道数:2

通道直径:1.5 mm

有线
蠕动泵

兰格

BT100-2J

2

转速范围:0.1~100 r/min

转速分辨率:0.1 r/min

有线
pH电极

梅特勒托利多

InPro3030/225

4

参比系统:凝胶电解质

测量范围:0~14

精度:0.01

AK9电缆
DO电极

梅特勒托利多

InPro6800/220

4

测量技术:电化学/极谱

测量范围:0%~100%(O2饱和度)

精度:≤1%

VP6电缆
变送器

上海汨源精密仪器

Bio280-PH-DO-RTD

4

测量范围:0~14

pH测量 分辨率:0.01

精度:± 0.02

RS485

测量范围:0%~500%

DO测量 分辨率:0.01%

精度:≤±0.5%

磁力搅拌器

尚仪

SN-MS-10L

4

最大搅拌量:10 L

转速范围:100~1 500 r/min

有线
交换机

台达

DVS-008I00

1

交换技术:储存并传送

百兆以太网

TCP/IP
表1  液体培养基自动制备系统的硬件设备
图3  进料子系统自动控制流程
图4  出料子系统自动控制流程
图5  MCGS触摸屏组态主界面
图6  液体培养基自动制备系统测试现场
移液体积/mL允许的相对误差/%允许的重复性误差/%
1±0.800±0.300
5±0.800±0.300
10±0.600±0.300
表2  ISO 8655:2022中规定的移液器允许误差
目标移液体积/mL相对误差/%重复性误差/%
1±4.000±0.962
5±0.840±0.166
10±0.280±0.083
15±0.200±0.067
20±0.130±0.045
表3  1#进料子系统性能测试结果
图7  注射泵移液误差
图8  高度差对系统移液误差的影响
图9  管路体积对系统移液误差的影响
水平因素
VAVB /mLHAHB /mm
13.07,1.11189,279
24.07,1.41218,308
35.07,1.71247,337
表4  系统移液误差中心复合试验的因素与水平
序号因素水平EA/mLEB/mL
VAVBHAHB
1230.100.04
2320.110.04
3220.090.03
4220.090.03
5220.090.03
6310.100.02
7220.090.03
8330.130.05
9120.070.02
10220.090.03
11110.060.01
12210.070.02
13130.070.03
表5  系统移液误差中心复合试验结果
项目来源自由度平方和均方FP1)
系统移液误差A模型50.004 2080.000 84270.22<0.001**
线性20.004 0830.002 042170.33<0.001**
VA10.003 2670.003 267272.52<0.001**
HA10.000 8170.000 81768.13<0.001**
VA210.000 0160.000 0161.340.285
HA210.000 0180.000 0181.540.254
VAHA10.000 1000.000 1008.340.023*
误差70.000 0840.000 012
合计120.004 292
系统移液误差B模型50.001 2710.000 25484.85<0.001**
线性20.001 2330.000 617205.78<0.001**
VB10.000 4170.000 417139.04<0.001**
HB10.000 8170.000 817272.52<0.001**
VB210.000 0040.000 0041.340.285
HB210.000 0040.000 0041.340.285
VBHB10.000 0250.000 0258.340.023*
误差70.000 0210.000 003
合计120.001 292
表6  系统移液误差中心复合试验结果方差分析
目标移液体积/mL相对误差/%重复性误差/%
1±2.400±0.535
5±0.520±0.109
10±0.180±0.084
15±0.133±0.047
20±0.080±0.045
表7  误差修正后1#进料子系统性能测试结果
子系统移液设备误差修正量/mL
1#进料子系统注射泵1-ZB1-0.011
注射泵1-ZB2-0.009
2#进料子系统注射泵2-ZB1-0.007
注射泵2-ZB2-0.010
3#进料子系统注射泵3-ZB10.397
注射泵3-ZB20.380
4#进料子系统注射泵4-ZB1-0.012
注射泵4-ZB2-0.010
出料子系统注射泵5-ZB10.158
注射泵5-ZB20.189
表8  液体培养基自动制备系统各移液设备的误差修正量
混合罐pH的最大测量误差DO的最大测量误差/%pH的最大控制误差
1#混合罐±0.03±0.5±0.18
2#混合罐±0.04±0.6±0.17
3#混合罐±0.04±1.0±0.17
4#混合罐±0.04±0.7±0.15
表9  pH监控和DO监测测试结果
组分浓缩倍数浓度/(g/L)1 L培养基所需的用量/mL
Na2HPO4溶液533.9200
KH2PO4溶液5015020
NaCl溶液502520
NH4Cl溶液505020
MgSO4·7H2O溶液10049.310
CaCl2溶液1001.110
葡萄糖溶液5020020
表10  M9基础液体培养基配方
组分目标移液体积/mL密度/(g/mL)相对误差/%重复性误差/%
Na2HPO4溶液2001.028 5±0.335±0.074
KH2PO4溶液201.094 4±0.150±0.128
NaCl溶液201.010 8±0.040±0.204
NH4Cl溶液201.010 9±0.050±0.274
MgSO4·7H2O溶液101.021 9±0.020±0.249
CaCl2溶液101.000 9±0.120±0.259
葡萄糖容液201.051 8±0.100±0.203
去离子水7001.000 0±0.062±0.089
表11  各组分溶液移取测试结果

目标移液

体积/mL

密度/

(g/mL)

相对误差/%重复性误差/%
501.010 8±0.182±0.199
75±0.216±0.224
100±0.336±0.104
表12  M9基础液体培养基分装测试结果
  
1 MADIGAN M T, MARTINKO J M, BENDER K S, et al. Brock biology of microorganisms[M]. 14th ed. London: Pearson Education, 2014: 73-100.
2 LEWIS W H, TAHON G, GEESINK P, et al. Innovations to culturing the uncultured microbial majority[J]. Nature Reviews Microbiology, 2021, 19(4): 225-240. doi:10.1038/s41579-020-00458-8
doi: 10.1038/s41579-020-00458-8
3 熊盈盈,莫祯妮,邱树毅,等. 未培养环境微生物培养方法的研究进展[J]. 微生物学通报,2021,48(5):1765-1779. doi:10.13344/j.microbiol.china.200881
XIONG Ying-ying, MO Zhen-ni, QIU Shu-yi, et al. Research progress on culture methods of uncultured environmental microorganisms[J]. Microbiology China, 2021, 48(5): 1765-1779.
doi: 10.13344/j.microbiol.china.200881
4 LAGIER J C, DUBOURG G, MILLION M, et al. Culturing the human microbiota and culturomics[J]. Nature Reviews Microbiology, 2018, 16(9): 540-550. doi:10.1038/s41579-018-0041-0
doi: 10.1038/s41579-018-0041-0
5 陈政霖,马春玄,邢新会,等.微生物微培养系统研究现状与展望[J].生物工程学报,2019,35(7):1151-1161. doi:10.13345/j.cjb.190097
CHEN Zheng-lin, MA Chun-xuan, XING Xin-hui, et al. Micro-cultivation system in microbiology: frontiers and prospects[J]. Chinese Journal of Biotechnology, 2019, 35(7): 1151-1161.
doi: 10.13345/j.cjb.190097
6 METTLER T. CHRONECT XPR robotic powder dispensing[EB/OL]. (2021-05-05)[2021-12-01].
7 GmbH Systec. Systec mediafill dispensing and pouring system[EB/OL]. (2017-05-03)[2021-12-01].
8 颜诚,杨亚飞,李想,等.一种微生物培养基分装装置:CN110004030A[P].2019-07-12.
YAN Cheng, YANG Ya-fei, LI Xiang, et al. A microbial culture medium dispensing device: CN110004030A[P]. 2019-07-12.
9 陈静,董家新,梁士楚,等.小型培养基制备与分装装置的研制[J].实验科学与技术,2016,14(6):85-86,144. doi:10.3969/j.issn.1672-4550.2016.06.023
CHEN Jing, DONG Jia-xin, LIANG Shi-chu, et al. Small efficient culture medium preparation and filling device[J]. Experiment Science and Technology, 2016, 14(6): 85-86, 144.
doi: 10.3969/j.issn.1672-4550.2016.06.023
10 王皓宇,王斌,刘运波,等.半自动微生物培养基保温分装装置研究[J].实验技术与管理,2016,33(10):99-101. doi:10.16791/j.cnki.sjg.2016.10.025
WANG Hao-yu, WANG Bin, LIU Yun-bo, et al. Research and development on a semi-automatic device used for dispense microbial culture medium[J]. Experimental Technology and Management, 2016, 33(10): 99-101.
doi: 10.16791/j.cnki.sjg.2016.10.025
11 李俊.微生物培养基自动配制系统的设计与实现[D].北京:北京化工大学,2020:59-60.
LI Jun. Design and implementation of microbial culture medium automatic preparation system[D]. Beijing: Beijing University of Chemical Technology, 2020: 59-60.
12 AYE A M, HAY M O, KYAWT K H. Liquid level and photoelectric sensors based automatic liquid mixing and filling machine system using PLC[J]. Journal of Trend in Scientific Research and Development, 2019, 3(5): 1950-1954. doi:10.31142/ijtsrd27835
doi: 10.31142/ijtsrd27835
13 谢志豪,方辉,袁泽林.数字化移液工作站的设计与开发[J].机械设计与研究,2017,33(5):188-191. doi:10.13952/j.cnki.jofmdr.2017.0223
XIE Zhi-hao, FANG Hui, YUAN Ze-lin. The design and construction of high-flux desktop pipetting workstation[J]. Machine Design and Research, 2017, 33(5): 188-191.
doi: 10.13952/j.cnki.jofmdr.2017.0223
14 WU Yan-qi, CHEN Hui, WANG Wei, et al. Development and validation of an automated liquid handling system for sample preparation based on multichannel air displacement pipetting technology[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(7): 6867-6871. doi:10.1166/jnn.2016.12597
doi: 10.1166/jnn.2016.12597
15 刘国平,席治国,聂诗良,等.瓶装放射性液体自动取样装置的研制[J].原子能科学技术,2013,47(1):151-156. doi:10.7538/yzk.2013.47.01.0151
LIU Guo-ping, XI Zhi-guo, NIE Shi-liang, et al. Development of auto-sampling device for quantifying radioactive liquid in sealed bottle[J]. Atomic Energy Science and Technology, 2013, 47(1): 151-156.
doi: 10.7538/yzk.2013.47.01.0151
16 刘亚欣,陈立国,孙立宁.基于复合智能控制的非接触式液体定量分配系统[J].机械工程学报,2010,46(20):175-181. doi:10.3901/JME.2010.20.175
LIU Ya-xin, CHEN Li-guo, SUN Li-ning. Non-contact liquid rationing system based on compound intelligent control[J]. Journal of Mechanical Engineering, 2010, 46(20): 175-181.
doi: 10.3901/JME.2010.20.175
17 KARWATH P, SARTOR J, GRIES W, et al. Steam sterilization and automatic dispensing of [18F] fludeoxyglucose (FDG) for injection[J]. Applied Radiation and Isotopes, 2005, 62(4): 577-586. doi:10.1016/j.apradiso.2004.08.003
doi: 10.1016/j.apradiso.2004.08.003
18 WALSH D I, MURTHY S K, RUSSOM A. Ultra-high-throughput sample preparation system for lymphocyte immunophenotyping point-of-care diagnostics[J]. Journal of Laboratory Automation, 2016, 21(5): 706-712. doi:10.1177/2211068216634003
doi: 10.1177/2211068216634003
19 金红星,成文玉.微生物学实验“培养基的配制”中存在的问题与解决方法[J].实验室科学,2014,17(1):44-46. doi:10.3969/j.issn.1672-4305.2014.01.014
JIN Hong-xing, CHENG Wen-yu. Problems and solutions of medium preparation in microbiology experiment[J]. Laboratory Science, 2014, 17(1): 44-46.
doi: 10.3969/j.issn.1672-4305.2014.01.014
20 石照耀,董定雨,叶勇,等.小尺寸轴类零件快速测量机的设计[J].仪器仪表学报,2018,39(4):10-17. doi:10.19650/j.cnki.cjsi.J1702656
SHI Zhao-yao, DONG Ding-yu, YE Yong, et al. Design of rapid measurement machine for small size shaft parts[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 10-17.
doi: 10.19650/j.cnki.cjsi.J1702656
21 张刚,胡洋洋,韩祥兰,等.淡水珍珠蚌循环水养殖模式下分布式水质监控系统设计[J].农业工程学报,2020,36(7):239-247. doi:10.11975/j.issn.1002-6819.2020.07.028
ZHANG Gang, HU Yang-yang, HAN Xiang-lan, et al. Design of distributed water quality monitoring system under circulating water aquaculture mode of freshwater pearl mussels[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 239-247.
doi: 10.11975/j.issn.1002-6819.2020.07.028
22 JIANG Ting-ting, SUN Sai-nan, CHEN Yan-an, et al. Microbial diversity characteristics and the influence of environmental factors in a large drinking-water source[J]. Science of the Total Environment, 2021, 769(5): 144698. doi:10.1016/j.scitotenv.2020.144698
doi: 10.1016/j.scitotenv.2020.144698
23 王昱,吴鹏,曾志雄,等.规模化猪舍废气复合净化系统设计与试验[J]. 农业机械学报,2020,51(4):344-352. doi:10.6041/j.issn.1000-1298.2020.04.039
WANG Yu, WU Peng, ZENG Zhi-xiong, et al. Design and experiment of combination air scrubbing system for large-scale pig house[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 344-352.
doi: 10.6041/j.issn.1000-1298.2020.04.039
24 陈玉仑,孙晨阳,卢中山,等.基于可编程控制器的猪胴体喷淋冷却作业控制系统设计[J].农业工程学报,2018,34(3):273-278. doi:10.11975/j.issn.1002-6819.2018.03.036
CHEN Yu-lun, SUN Chen-yang, LU Zhong-shan, et al. Design of control system for spray chilling operation of pig carcass based on PLC[J]. Transactions of the Chinese Society of Agricultural, 2018, 34(3): 273-278.
doi: 10.11975/j.issn.1002-6819.2018.03.036
25 国家质量监督检验检疫总局. 移液器检定规程: [S]. 北京:中国计量出版社,2006:5-7.
General Administration of Quality Supervision, Inspection and Quarantine. Verification regulation of locomotive pipette: [S]. Beijing: China Metrology Publishing House, 2006: 5-7.
26 Technical Committees ISO. Piston-operated volumetric apparatus—Part 2: piston pipettes: [S]. Berlin: German Institute for Standardization, 2002:5-7.
27 Technical Committees ISO. Piston-operated volumetric apparatus—Part 6: gravimetric methods for the determination of measurement error: [S]. Berlin: German Institute for Standardization, 2002:8-10.
28 尚志武,周湘平,李成. 高精度小型酶联免疫分析仪微量进样系统设计[J].工程设计学报,2018,25(5):597-606. doi:10.3785/j.issn.1006-754X.2018.05.015
SHANG Zhi-wu, ZHOU Xiang-ping, LI Cheng. Design of micro-sampling system for high precision for small enzyme immunoassay analyzer[J]. Chinese Journal of Engineering Design, 2018, 25(5): 597-606.
doi: 10.3785/j.issn.1006-754X.2018.05.015
29 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品微生物学检验 培养基和试剂的质量要求: [S].北京:中国标准出版社出版,2013:5-6.
National Health and Family Planning Commission of the People’s Republic of China. National food safety standards Food microbiological examination Quality requirements of culture medium and reagent: [S]. Beijing: Standards Press of China, 2013: 5-6.
[1] 徐长锋, 周友行, 肖加其, 何东柯, 赵玉. 海泡石螺旋搅拌磨机最优工艺参数研究[J]. 工程设计学报, 2022, 29(1): 51-58.
[2] 曹礼勇, 钟永彦, 陈娟, 华亮. 基于BLEWi-Fi的建筑能耗监测系统设计[J]. 工程设计学报, 2021, 28(5): 654-661.