Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (3): 321-329    DOI: 10.3785/j.issn.1006-754X.2019.03.011
建模、仿真、分析与决策     
基于状态空间模型的机床加工精度分析
黄华1, 王庆文1, 郭润兰1, 刘晓健2, 张来喜1
1.兰州理工大学 机电工程学院, 甘肃 兰州 730000
2.浙江大学 流体动力与机电系统国家重点实验室, 浙江 杭州 310027
Machining accuracy analysis of machine tool based on state space model
HUANG Hua1, WANG Qing-wen1, GUO Run-lan1, LIU Xiao-jian2, ZHANG Lai-xi1
1.School of Mechanical & Electrical Engineering, Lanzhou University of Technology, Lanzhou 730000, China
2.State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1648 KB)   HTML
摘要:

伺服进给系统的机电耦合特性直接影响数控机床的加工精度,单独针对伺服系统或机械系统建立的模型不足以准确分析系统参数对机床整机加工精度的影响。因此,综合考虑机床伺服系统与机械结构之间的耦合关系,建立伺服进给系统机电耦合动力学模型具有重要意义。首先,为保证伺服进给系统建模精度,利用状态空间法建立了机床机电耦合状态空间方程。其次,建立了伺服进给系统机电耦合Simulink模型,在此基础上采用复合控制提高系统的响应速度和加工精度。随后,利用多体动力学软件建立机床进给系统的刚柔耦合动力学模型,添加摩擦、阻尼等非线性因素,并导入Simulink与伺服系统建立耦合关系。最终,建立了卧式加工中心伺服进给系统的刚柔-机电耦合仿真加工平台,通过模拟机床加工轨迹以验证机电耦合状态空间模型的可靠性。结果表明:该状态空间模型能准确描述系统内部参数和系统输入输出的耦合关系;采用复合控制结构能有效提高系统的响应速度和加工精度。研究结果为数控机床的仿真建模和提高加工精度提供理论依据,为机床机电系统的设计提供有效指导。

关键词: 机电耦合状态空间模型复合控制伺服进给系统刚柔耦合    
Abstract:

The machining accuracy of the CNC (computer numerical control) machine tool is directly affected by the electromechanical coupling characteristics of the servo feed system, which means a model established for servo system or mechanical system alone is not sufficient to study the influence of system parameters on the machining accuracy exactly. Therefore, it is important to synthetically consider the coupling relationship between servo system and mechanical structure of machine tool and establish the electromechanical coupling dynamics model of the servo system. Firstly, in order to ensure the accuracy of servo feed system modeling, the mechanical and electromechanical coupling state space equations of machine tools were established by the state space method. Secondly, the electromechanical coupling Simulink model of servo feed system was established, and on this basis, the composite control was adopted to improve the responding speed and tracking accuracy of the system further. Subsequently, the rigid-flexible coupling dynamics model of machine tool feed system was established by using multi-body dynamics software, and the dynamics model was imported into Simulink and coupled with the servo control system after added the nonlinear factors such as friction and damping. Finally, the rigid-flex and electromechanical coupling simulation platform of the horizontal machining center servo feed system was established and the reliability of the state space model was verified by simulating the machining path on the platform. The results showed that the coupling relationship between the internal parameters and the input and output parameters of the system was described more accurately by the state space model, and the performance of the system was improved greatly by the compound control structure. The research results can provide theoretical basis for theoretical modeling and improvement of machining accuracy of CNC machine tools, and provide effective guidance for the electromechanical system design of CNC machine tools.

Key words: electromechanical coupling    state space model    compound control    servo feed system    rigid-flexible coupling
收稿日期: 2019-06-28 出版日期: 2019-06-28
CLC:  TP 391.9  
基金资助:

国家自然科学基金资助项目(51565030, 51765031)

作者简介: 黄华(1978—),男,湖南长沙人,副教授,博士,从事复杂机电系统的集成技术、机械装备结构动力学分析与控制等研究,E-mail:hh318872@126.com,https://orcid.org/0000-0002-4945-5888
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄华
王庆文
郭润兰
刘晓健
张来喜

引用本文:

黄华, 王庆文, 郭润兰, 刘晓健, 张来喜. 基于状态空间模型的机床加工精度分析[J]. 工程设计学报, 2019, 26(3): 321-329.

HUANG Hua, WANG Qing-wen, GUO Run-lan, LIU Xiao-jian, ZHANG Lai-xi. Machining accuracy analysis of machine tool based on state space model. Chinese Journal of Engineering Design, 2019, 26(3): 321-329.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.03.011        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I3/321

1 LIJie, XIEFu-gui, LIUXin-jun, et al. Analysis on the research status of volumetric positioning accuracy improvement methods for five-axis NC machine tools [J]. Journal of Mechanical Engineering, 2017, 53(7): 113-128.
2 LIJie, XIEFu-gui, LIUXin-jun, et al. Dynamic modeling of a linear feed axis considering the characteristics of the electromechanical and rigid-flexible coupling [J]. Journal of Mechanical Engineering, 2017, 53(17): 60-69.
3 LINLi-hong, CHENXiao-an, ZHOUChao-qun, et al. Modeling and simulation analysis of the electromechanical coupling facts about precision transmission system[J]. Journal of Chongqing University (Natural Science Edition), 2007, 30(11):14-18.
4 LEE C H, YANGM Y, OH C W, et al. An integrated prediction model including the cutting process for virtual product development of machine tools[J]. International Journal of Machine Tools & Manufacture, 2015, 90: 29-43. doi:10.1016/j.ijmachtools.2014.12.003
5 KIM M S, CHUNGS C. Integrated design methodology of ball-screw driven servomechanisms with discrete controllers. Part I: Modelling and performance analysis[J]. Mechatronics, 2006, 16(8): 491-502. doi:10.1016/j.mechatronics.2006.01.008
6 KIM M S, CHUNGS C. Integrated design methodology of ball-screw driven servomechanisms with discrete controllers. Part II: Formulation and synthesis of the integrated design[J]. Mechatronics, 2006, 16(8): 503-512. doi:10.1016/j.mechatronics.2006.01.009
7 YAOYan-feng, LIUQiang, WUWen-jing. Dynamic simulation of a linear motor feed drive system based on rigid-flexible & electrical-mechanical coupling[J]. Journal of Vibration and Shock, 2011, 30(1): 191-196.
8 ZHAODa-xing, YANGYong, XUWan, et al. Mechanical and electrical co-simulation for CNC machine tool feed drive system based on ADAMS and MATLAB[J]. Machine Tool & Hydraulics, 2014, 42(10): 28-31.
9 NINGJian-rong, XIAJia-kuan, YULing, et al. Flexible electromechanical coupling dynamic characteristics analysis on permanent magnet linear feed system[J]. China Mechanical Engineering, 2014, 25(19): 2597-2602.
10 DENGChang-qi, LIAOHui. Research on accurate positioning or AC servo system based on feed-forward control[J]. Engineering Journal of Wuhan University, 2013, 46(3): 405-408.
11 ZHAOTong, XIEYi, HUJian. Multi-axis coupling of machining centers based on electromechanical modeling[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(2): 113-119.
12 ZHONGJue. Coupling design theory and methods of complex electromechanical systems[M]. Beijing:China Machine Press, 2007: 18-24.
13 CHENFeng-hua. ADAMS 2016 virtual prototyping technology[M]. Beijing: Tsinghua University Press, 2017: 161-163.

[1] 罗茹楠, 牛文铁, 王晨升. 基于机电-刚柔耦合特性的进给系统动态误差影响因素分析[J]. 工程设计学报, 2019, 26(5): 561-569.
[2] 任丹, 王丹丹, 郑雪晓, 王勇, 杜平安. 基于模型重构的天线机电耦合仿真方法研究[J]. 工程设计学报, 2017, 24(2): 156-161.
[3] 吴垚, 曹巨江, 刘言松, 燕卫亮. 曲柄群驱动机构刚柔耦合的动平衡研究[J]. 工程设计学报, 2016, 23(5): 468-480.
[4] 陈永亮,韩瑶,刘谱,黄金,包能胜,顾佩华*. 五辊式无溶剂涂布系统交叉耦合建模与设计方法[J]. 工程设计学报, 2014, 21(1): 38-42.
[5] 张志杰, 牛占文, 何桢. 有色动态噪声下多变量自相关过程调整策略研究[J]. 工程设计学报, 2013, 20(6): 529-533.
[6] 刘亚东, 杨忠炯, 周立强, 胥景. 湿喷机机械臂喷枪振动特性的研究[J]. 工程设计学报, 2013, 20(4): 303-308.