Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (2): 209-215    DOI: 10.3785/j.issn.1006-754X.2018.02.012
整机和系统设计     
基于LabVIEW的多通道视觉测速系统设计
倪健, 杨预立, 邢强, 徐海黎
南通大学 机械工程学院, 江苏 南通 226019
Design of multi-channel visual velocity measurement system based on LabVIEW
NI Jian, YANG Yu-li, XING Qiang, XU Hai-li
School of Mechanical Engineering, Nantong University, Nantong 226019, China
 全文: PDF(7592 KB)   HTML
摘要:

目标运动速度与运动状态的快速预判是机器人避障、目标检测与跟踪的关键。经典的初级运动检测器(elementary motion detector,EMD)模型具有在局部范围内的速度矢量敏感特性,在此基础上结合波峰检测算法,提出一种动目标运动速度和运动状态的快速测速法。为验证所提方法的可行性和有效性,以线性排列的光敏传感器阵列为视觉检测单元,在LabVIEW开发环境中,利用雷赛SMC3380运动控制器和研华PCI-1747U数据采集卡,搭建了具有动目标运动控制及动目标信号采集功能的多通道视觉测速系统;通过多通道数据采集及动目标快速测速处理,实现了目标运动速度和运动状态的判别。实验结果表明:多通道视觉测速系统运行稳定,能够实现最大速度为80 mm/s(绝对误差小于±2 mm/s,相对误差小于±3%),以及最大加速度为20 mm/s2的匀加速运动状态的动目标检测与判断。为机器人视觉感知器的动目标快速预判研究提供了新思路。

关键词: 多通道数据采集运动控制速度检测    
Abstract:

The fast prediction of the movement velocity and status of a target is critical for robot to avoid obstacle, detect and track target. Based on the elementary motion detector (EMD) model which was advantaged in sensitivity in motion speed detection in local area, a fast detection method for detecting moving target's velocity and status was proposed. The method combined with the EMD and peak detection algorithm. In order to verify the feasibility and effectiveness of the fast detection method for moving target, a multi-channel visual velocity measuring system was designed. In this system, it contained visual inspection unit, multi-channel data acquisition and target motion control device. The visual inspection unit was designed with linear optical sensor array. The multi-channel data acquisition (Advantech PCI-1747U data acquisition) and three-axis motion controller (Leadshine SMC3380) were programmed both in the LabVIEW development environment. Target motion device controlled object moving in scheduled way, and the multi-channel data device gathered object motion information data from visual inspection unit, which could predict the target's velocity and status after processed by the fast detection method. The experiment results showed that the multi-channel visual speed measuring system run stably and achieved in the maximum velocity of 80 mm/s moving target detection (absolute error less than ±2 mm/s, relative error less than ±3%) and the maximum acceleration of 20 mm/s2 acceleration measurement. It provides a new idea for the research of rapid prediction of moving targets by robot vision sensors.

Key words: multi-channel    data acquisition    motion control    velocity detection
收稿日期: 2017-09-29 出版日期: 2018-04-28
CLC:  TP311.1  
基金资助:

江苏省自然科学基金(青年基金)资助项目(BK20150407);江苏省高校自然科学基金面上项目(15KJB410001);南通市应用基础研究工业创新项目(GY12016007)

通讯作者: 邢强(1985-),男,江苏南通人,讲师,博士,从事仿生视觉研究,E-mail:meexq@ntu.edu.cn,http://orcid.org/0000-0001-9129-1146     E-mail: meexq@ntu.edu.cn
作者简介: 倪健(1992-),男,江苏盐城人,硕士生,从事仿生复眼机器视觉研究,E-mail:15100045@yjs.ntu.edu.cn,http://orcid.org/0000-0003-1462-5709
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
倪健
杨预立
邢强
徐海黎

引用本文:

倪健, 杨预立, 邢强, 徐海黎. 基于LabVIEW的多通道视觉测速系统设计[J]. 工程设计学报, 2018, 25(2): 209-215.

NI Jian, YANG Yu-li, XING Qiang, XU Hai-li. Design of multi-channel visual velocity measurement system based on LabVIEW. Chinese Journal of Engineering Design, 2018, 25(2): 209-215.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.02.012        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I2/209

[1] 吴俊君,管贻生,张宏,等.仿人机器人视觉导航中的实时性运动模糊探测器设计[J].自动化学报,2014,40(2):267-276. WU Jun-Jun, GUAN Yi-Sheng, ZHANG Hong, et al. A real-time method for motion blur detection in visual navigation with a humanoid robot[J]. Acta Automatica Sinica, 2014, 40(2):267-276.
[2] 刘溯奇,郝卫东,林添成,等.基于嵌入式的视觉巡线机器人系统设计[J].工程设计学报,2008,15(2):94-96. LIU Su-qi, HAO Wei-dong, LIN Tian-cheng, et al. Design of visual robot system to detect lines based on embedded technology[J]. Chinese Journal of Engineering Design, 2008, 15(2):94-96.
[3] NITSCHE M, MEJAIL M. Hybrid vision-based navigation for mobile robots in mixed indoor/outdoor environments[J]. Pattern Recognition Letters, 2015, 53(C):118-128.
[4] SEBI S A, SUNNY D. Obstacle avoidance in mobile robotic sensors and establishing connection[J]. Procedia Technology, 2016, 25:364-371.
[5] FREW E W, SENGUPTA R. Obstacle avoidance with sensor uncertainty for small unmanned aircraft (Ⅰ)[J]. IEEE Conference on Decision and Control, 2004, 1:614-619.
[6] ROMANO D, BENELLI G, STEFANINI C. Escape and surveillance asymmetries in locusts exposed to a Guinea fowl-mimicking robot predator[J]. Scientific Reports, 2017, 7(1):12825.
[7] ALDRICH J R, ZHANG Q H. Chemical ecology of neuroptera[J]. Annual Review of Entomology, 2016, 61(1):197-218.
[8] SHIMODA M, HONDA K I. Insect reactions to light and its applications to pest management[J]. Applied Entomology & Zoology, 2013, 48(4):413-421.
[9] LOWNE B T. The compound vision and morphology of the eye in insects[J]. Nature, 1885, 31:433.
[10] 雷卫宁,郭云芝,高挺挺,等.基于仿生复眼的大视场探测系统结构研究[J].光学与光电技术,2016,14(3):62-66. LEI Wei-ning, GUO Yun-zhi, GAO Ting-ting, et al. Study on the structure of large field view detection system based on bionic compound eye[J]. Optics & Optoelectronic Technology, 2016, 14(3):62-66.
[11] HORRIDGE G A. The compound eye of insects[J]. Scientific American, 1977, 237(1):108-120.
[12] 刘尚武,蔡延光,戚远航,等.大场景视频协同监控系统的研究与实现[J].工业控制计算机,2017,30(2):60-62. LIU Shang-wu, CAI Yan-guang, QI Yuan-hang, et al. Cooperative video monitoring system of large scene[J]. Industrial Control Computer, 2017, 30(2):60-62.
[13] 梁高升.基于多摄像头的全景图像拼接系统[D].济南:济南大学信息科学与工程学院,2016:49-50. LIANG Gao-sheng. Panoramic image mosaic system based on multi camera[D]. Jinan:Jinan University, School of Information Science and Engineering, 2016:49-50.
[14] WANG Qing-bin, ZOU Wei, ZHANG Feng, et al. Binocular initial location and extrinsic parameters real-time calculation for bionic eye system[C]//201411th World Congress on Intelligent Control and Automation, Shenyang, Jun.29-Jul.4, 2014.
[15] MA Meng-chao, GAO Xi-cheng, ZHANG Jin, et al. Design of a compound eye system with planar micolens array and curved folded mirrors[C]//The 8th SPIE International Symposium on Advanced Optical Manufacturing and Testing Technologies, Suzhou, Apr.26-29, 2016.
[16] RICK B, TAQI M, MATT N. LabVIEW advanced programming techniques. Boca Raton:CRC Press, 2006:193-195.
[17] 孙卓辉,章大海,王振波,等.基于研华DAQNavi的LabVIEW虚拟仪器设计[J].实验室研究与探索,2016,35(6):71-73. SUN Zhuo-hui, ZHANG Da-hai, WANG Zhen-bo, et al. Virtual instrument system based on LabVIEW and Advantech DAQNavi[J]. Laboratory Research and Exploration, 2016, 35(6):71-73.
[18] 魏义虎,陈雷.基于LabVIEW-VISA方式的串口通信研究[J].电子设计工程,2015,23(24):129-131. WEI Yi-hu, CHEN Lei. Serial port communication based on LabVIEW-VISA[J]. Electronic Design Engineering, 2015, 23(24):129-131.
[19] BASCH M E, CRISTEA D G, TIPONU V, et al. Elaborated motion detector based on Hassenstein-Reichardt correlator model[J]. Latest Trends on Systems, 2010, 1:192-195.
[20] 左兆陆,郑宾,甘潦,等.一种红外光幕测速系统的设计与应用[J].工程设计学报,2011,18(2):149-152. ZUO Zhao-lu, ZHENG Bin, GAN Liao, et al. A design and application method of speed test system based on infrared light screen[J]. Chinese Journal of Engineering Design, 2011, 18(2):149-152.

[1] 田为广,徐海黎,陈妍,朱倚娴,刘熙. 可变车道隔离护栏运载机器人系统及其控制策略[J]. 工程设计学报, 2022, 29(2): 237-246.
[2] 黄湘龙, 尹凤, 李艳艳, 王文凯, 赵思波. 动静轴结构旋翼轴载荷分离仿真分析与试验研究[J]. 工程设计学报, 2020, 27(2): 256-262.
[3] 尚志武, 周湘平, 李成. 高精度小型酶联免疫分析仪微量进样系统设计[J]. 工程设计学报, 2018, 25(5): 597-606.
[4] 王恒, 孙小明, 邵彦, 肖后昆, 张小龙. 基于试验台架的轮胎测温系统研究[J]. 工程设计学报, 2018, 25(5): 590-596.
[5] 杨旭, 龚国芳, 杨华勇, 陈馈, 王林涛. 盾构管片拼装试验台监控系统设计[J]. 工程设计学报, 2013, 20(6): 534-538.
[6] 左兆陆, 郑宾, 甘潦, 邓勇, 白福明. 一种红外光幕测速系统的设计与应用[J]. 工程设计学报, 2011, 18(2): 149-152.
[7] 宋天佳, 陈劭, 苗立东, 孙逊. xPC目标在EPS试验台电机控制中的应用[J]. 工程设计学报, 2009, 16(6): 447-451.
[8] 陈婵娟, 袁 斌. 新型陶瓷快速成型装置数控系统的研究[J]. 工程设计学报, 2009, 16(5): 335-339.
[9] 王海南, 邱望标, 黄 克. 贵州少数民族文化遗产的逆向工程应用研究[J]. 工程设计学报, 2009, 16(5): 379-382.
[10] 刘祚时, 邝先验, 吴翠琴. 基于模糊PID的足球机器人运动控制研究[J]. 工程设计学报, 2006, 13(4): 224-227.
[11] 刘莉, 高昆, 汪乐宇. 流水线技术实现高效多通道∑/△型ADC数据采集系统[J]. 工程设计学报, 2002, 9(5): 279-282.
[12] 盛忠起, 蔡光起. 基于虚轴机床的检测系统设计[J]. 工程设计学报, 2001, 8(3): 135-138.
[13] 王世刚, 马玉林, 郭泰. FMS 中加工质量检测与控制技术的研究[J]. 工程设计学报, 2000, 7(4): 61-63.