Please wait a minute...
工程设计学报  2014, Vol. 21 Issue (4): 389-392    DOI: 10.3785/j.issn. 1006-754X.2014.04.014
通用零部件设计     
圆弧型柔性球铰柔度设计计算
杨春辉,刘平安
华东交通大学 轨道交通学院,江西 南昌 330013
Design and calculation of compliance of arc flexure spherical hinge
 YANG  Chun-Hui, LIU  Ping-An
School of Railway Tracks and Transportation, East China Jiaotong University, Nanchang 330013, China
 全文: PDF(976 KB)   HTML
摘要: 通过研究圆弧型柔性球铰的柔度性能,使该柔性球铰可代替传统的双轴柔性铰链应用于空间多自由度柔顺机构.根据《材料力学》中的卡氏第二定理,圆弧型柔性球铰柔度的解析公式被推导出,然后利用ANSYS12.0软件对其进行有限元分析, 结果表明有限元分析与解析式的计算结果基本一致.通过改变圆弧型柔性球铰的各结构参数来分析其性能,得出各结构参数对其柔度的影响大小依次为:最小截面直径 t、圆弧的圆心角θm、圆弧半径R、杨氏模量E. 此设计计算和特性分析为柔性球铰在柔顺机构的应用提供了依据.
关键词: 圆弧型柔性球铰卡氏定理柔度有限元    
Abstract: The compliance performance of arc flexure spherical hinges was studied which can replace traditional biaxial flexure hinges and be used in compliant mechanisms with multi-DOF. Based on Castigliano's second theorem,compliance equations of the arc flexure spherical hinge were formulated. Analytic formulas of the arc flexure spherical hinge were verified by ANSYS12.0 analysis. The research results showed that the finite element analysis and theoretical calculation were basically the same. After analyzing the performance of arc flexure spherical hinge by changing structural parameters, the influence order to its compliance was obtained. The greatest impact parameter was the minimum diameter t, followed by the arc central angle θm, the arc radius R and the Young’s modulus E. This method provides a valuable reference for the design and application of the flexure spherical hinge.
Key words: arc flexure spherical hinge    Castigliano's theorem    compliance    finite element
收稿日期: 2014-03-11 出版日期: 2014-08-28
基金资助:

江西省教育厅基金资助项目(GJJ13344).

作者简介: 杨春辉(1972—),男,江西丰城人,副教授,硕士,从事机械设计、并联机器人等研究,E-mail: yangchunhui@ecjtu.jx.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨春辉
刘平安

引用本文:

杨春辉, 刘平安. 圆弧型柔性球铰柔度设计计算[J]. 工程设计学报, 2014, 21(4): 389-392.

YANG Chun-Hui, LIU Ping-An. Design and calculation of compliance of arc flexure spherical hinge. Chinese Journal of Engineering Design, 2014, 21(4): 389-392.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn. 1006-754X.2014.04.014        https://www.zjujournals.com/gcsjxb/CN/Y2014/V21/I4/389

[1] 何育民, 程婉莹, 朱宝慧, 徐欢欢. 矩形梁裂纹柔度测量方法研究[J]. 工程设计学报, 2017, 24(6): 618-623.
[2] 刘庆玲. 柔性对称微位移放大机构性能分析方法的研究[J]. 工程设计学报, 2013, 20(4): 344-347.
[3] 刘庆玲, 翁海珊, 邱丽. 新型单边复和型柔性铰链的柔度计算及其性能分析[J]. 工程设计学报, 2009, 16(4): 276-280.
[4] 林颖,刘斌,胡清明,余熳烨,李文举. 基于支持向量机的车载称重模块设计[J]. 工程设计学报, 2009, 16(2): 133-137.