Please wait a minute...
工程设计学报  2012, Vol. 19 Issue (6): 485-488    
机电一体化和智能化系统设计理论、方法与技术     
改进证据理论及其在电力系统故障诊断中的应用
 李玲玲1,2, 景丽婷1, 马东娟1, 李志刚1
1.河北工业大学 电磁场与电器可靠性省部共建重点实验室, 天津 300130;
2.天津大学 电气与自动化工程学院, 天津 300072
Improved evidence theory and its application in fault diagnosis of power system
 LI  Ling-Ling1,2, JING  Li-Ting1, MA  Dong-Juan1, LI  Zhi-Gang1
1.ProvinceMinistry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability,Hebei University of Technology, Tianjin 300130, China;
2.Electrical and Automation Engineering Institute, Tianjin University, Tianjin 300072, China
 全文: PDF(512 KB)   HTML
摘要: 针对D-S证据理论中高度冲突的证据难以融合的问题,提出一种基于海明距离的证据合成规则.首先根据冲突系数的大小判断证据冲突程度,利用海明距离确定的相似度区分每条证据,并赋予权重,然后对原始基本信度分配函数进行重新分配,最终得到更加合理的合成结果.将该数据融合方法用于电力系统的故障诊断实例中,表明该方法合理有效,计算结果更符合实际.
关键词: 证据理论海明距离电力系统故障诊断    
Abstract: A new Dempster-Shafer evidence combination rule based on the Hamming distance was proposed aiming at solving the fusion problem of highly conflicting evidence. At first, we judged the evidence conflict degree according to the size of the conflict coefficient, the Hamming distance was used to determine the similarity to distinguish each of evidence, and the weight was given to the evidence. Then the original basic probability distribution function was redistributed, finally the more reasonable the syncretic result was obtained. At last, the data fusion method was applied to power system fault diagnosis example, the calculation result indicated that the method was effective and reasonable, and the conclusion was more actual.
Key words: evidence theory    Hamming distance    power system    fault diagnosis
出版日期: 2012-12-28
基金资助:

河北省科技支撑计划项目(10215682);河北省建设科技研究计划项目(2011-147,2009-250).

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李玲玲
景丽婷
马东娟
李志刚

引用本文:

李玲玲, 景丽婷, 马东娟, 李志刚. 改进证据理论及其在电力系统故障诊断中的应用[J]. 工程设计学报, 2012, 19(6): 485-488.

LI Ling-Ling, JING Li-Ting, MA Dong-Juan, LI Zhi-Gang. Improved evidence theory and its application in fault diagnosis of power system. Chinese Journal of Engineering Design, 2012, 19(6): 485-488.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/        https://www.zjujournals.com/gcsjxb/CN/Y2012/V19/I6/485

[1] 郝志勇, 刘伟, 夏玮, 闫闯. 基于BP神经网络的吸运风机故障诊断[J]. 工程设计学报, 2012, 19(1): 57-60.
[2] 杨春辉,魏军,谢泽,黎放. QFD与D-S结合的维修性设计评估方法研究[J]. 工程设计学报, 2009, 16(2): 93-97.
[3] 李玲玲, 刘锋国, 郭素娜, 高朝晖. 基于证据理论的产品选型决策方法[J]. 工程设计学报, 2006, 13(5): 281-285.