Please wait a minute...
工程设计学报  2012, Vol. 19 Issue (6): 417-421    
工程设计理论、方法与技术     
基于ELM的可折支撑锁机构可靠性及其敏感度分析
 银恺, 赖雄鸣, 吴正辉
中南大学 高性能复杂制造国家重点实验室,湖南 长沙 410083
Reliability and its sensitivity analyses for the folding support locking mechanism using extreme learning machine
 YIN  Kai, LAI  Xiong-Ming, WU  Zheng-Hui
State Key Lab oratory of High Performance and Complex Manufacturing, Central South University, Changsha 410083, China
 全文: PDF(809 KB)   HTML
摘要: 针对大多可靠性工程问题中机构极限状态函数为隐式的情况,提出了一种基于极限学习机(ELM)回归近似极限状态方程的可靠性及灵敏度分析的新方法.通过极限学习机与蒙特卡洛法相结合,利用极限学习机快速学习的能力,将复杂或隐式极限状态方程近似等价为显式极限状态方程,运用蒙特卡洛法计算出机构的失效概率,然后由高精度的显式极限状态方程进行各随机变量参数的灵敏度分析.该方法采用了基于单隐层前馈神经网络极限学习算法,因而在拟合非线性极限状态方程上表现优越,计算精度和效率高.最后以某型起落架中可折支撑锁机构为对象,进行了机构的可靠性及敏感度分析.结果表明:该方法具有高精度和高效率的优点,在工程应用上具有一定的价值.
关键词: 极限学习机可折支撑锁蒙特卡洛法可靠性灵敏度    
Abstract: For the most reliability problems with implicit limit state function in engineering mechanism, a new method based on extreme learning machine(ELM) that regress approximation of the limit state equation for reliability and reliability sensitivity analysis was presented. Using the fast learning capacity of extreme learning machine, implicit limit state function was approximated to explicit limit state function by combining the extreme learning machine with Monte Carlo method. The failure probability of mechanism was calculated using Monte Carlo method, and then explicit limit state function could be employed to analyze the sensitivity of each parameter. The method using single hidden layer feedforward neural network learning algorithm, thus in fitting the nonlinear limit state equation performed superior and has a high accuracy and efficiency. Finally, the reliability and sensitivity analysis of the folding support lock mechanism in a type of landing gear were carried out using the presented method. The results show that the presented method has virtues of high accuracy and efficiency. Thus, it is valuable for the engineering application.
Key words: extreme learning machine    the folding support lock mechanism    Monte Carlo method    reliability sensitivity
出版日期: 2012-12-28
基金资助:

总装部预研基金项目(6250103024).

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
银恺
赖雄鸣
吴正辉

引用本文:

银恺, 赖雄鸣, 吴正辉. 基于ELM的可折支撑锁机构可靠性及其敏感度分析[J]. 工程设计学报, 2012, 19(6): 417-421.

YIN Kai, LAI Xiong-Ming, WU Zheng-Hui. Reliability and its sensitivity analyses for the folding support locking mechanism using extreme learning machine. Chinese Journal of Engineering Design, 2012, 19(6): 417-421.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/        https://www.zjujournals.com/gcsjxb/CN/Y2012/V19/I6/417

[1] 来全宝, 陶庆, 胡玉舸, 孟庆丰. 基于人工鱼群算法-极限学习机的多手势精准识别[J]. 工程设计学报, 2021, 28(6): 671-678.
[2] 张枫念, 顾建苏, 张善兴. 蒙特卡洛法在膜簧碟簧生产中的优化[J]. 工程设计学报, 2003, 10(2): 108-110.