Please wait a minute...
Food Qual Safet  2021, Vol. 5 Issue (1): 1-9    DOI: 10.1093/fqsafe/fyab008
Research Articles     
Low-temperature combined with high-humidity thawing improves the water-holding capacity and biochemical properties of Portunus trituberculatus protein
Low-temperature combined with high-humidity thawing improves the water-holding capacity and biochemical properties of Portunus trituberculatus protein
 全文: PDF 
摘要: This study compared the effects of conventional thawing methods (water immersion thawing (WIT, (25±1) °C), natural air thawing (AT, (25±1) °C, relative humidity (RH) (65±2) per cent), refrigerator thawing (RT, 4 °C, RH (80±2) per cent) and low-temperature (LT) combined with high-humidity thawing (LT, –1 °C to 1 °C (LT–1–1), 2–4 °C (LT2–4), 5–7 °C (LT5–7) and 8–10 °C (LT8–10), RH≥95 per cent) on the water-holding capacity, lipid oxidation and biochemical properties of Portunus trituberculatus (P. trituberculatus) myofibrillar protein. The results showed that WIT and AT significantly decreased the water-holding capacity while dramatically increasing lipid oxidation, protein oxidation and degeneration, resulting in serious P. trituberculatus quality deterioration. High humidity was beneficial for P. trituberculatus thawing. The thawing time of P. trituberculatus under the conditions of LT2–4 was only 39.39 per cent of that of conventional air thawing at 4 °C (RT), and the LT2–4 samples not only maintained better water-holding capacity but also had an obviously reduced degree of lipid oxidation, protein oxidation and denaturation. Thawed samples LT2–4 and LT5–7 provided better maintenance of P. trituberculatus quality than the LT–1–1 and LT8–10 samples. The best quality was exhibited after thawing at 2–4 °C. The levels of thiobarbituric acid reacting substances, carbonyl content and surface hydrophobicity observably decreased in these samples, while the total sulfhydryl contents dramatically increased compared to those of conventionally thawed samples, indicating lower lipid oxidation and protein oxidation. Moreover, the Ca2+-ATPase activity of the sample thawed at 2–4 °C (2.06 μmol Pi/mg prot/h) was markedly higher than that of samples subjected to WIT and AT. The product qualities observed after thawing at –1 °C to 1 °C, 5–7 °C and 8–10 °C under LT were comparable to that observed by RT. Considering its thawing efficiency and product quality, LT is a suitable method for the thawing of P. trituberculatus, and the ideal thawing conditions were LT at 2–4 °C.
关键词: Portunus trituberculatusthawinglow temperature combined with high humiditywater-holding capacitylipid oxidationbiochemical properties of myofibrillar protein    
Abstract: This study compared the effects of conventional thawing methods (water immersion thawing (WIT, (25±1) °C), natural air thawing (AT, (25±1) °C, relative humidity (RH) (65±2) per cent), refrigerator thawing (RT, 4 °C, RH (80±2) per cent) and low-temperature (LT) combined with high-humidity thawing (LT, –1 °C to 1 °C (LT–1–1), 2–4 °C (LT2–4), 5–7 °C (LT5–7) and 8–10 °C (LT8–10), RH≥95 per cent) on the water-holding capacity, lipid oxidation and biochemical properties of Portunus trituberculatus (P. trituberculatus) myofibrillar protein. The results showed that WIT and AT significantly decreased the water-holding capacity while dramatically increasing lipid oxidation, protein oxidation and degeneration, resulting in serious P. trituberculatus quality deterioration. High humidity was beneficial for P. trituberculatus thawing. The thawing time of P. trituberculatus under the conditions of LT2–4 was only 39.39 per cent of that of conventional air thawing at 4 °C (RT), and the LT2–4 samples not only maintained better water-holding capacity but also had an obviously reduced degree of lipid oxidation, protein oxidation and denaturation. Thawed samples LT2–4 and LT5–7 provided better maintenance of P. trituberculatus quality than the LT–1–1 and LT8–10 samples. The best quality was exhibited after thawing at 2–4 °C. The levels of thiobarbituric acid reacting substances, carbonyl content and surface hydrophobicity observably decreased in these samples, while the total sulfhydryl contents dramatically increased compared to those of conventionally thawed samples, indicating lower lipid oxidation and protein oxidation. Moreover, the Ca2+-ATPase activity of the sample thawed at 2–4 °C (2.06 μmol Pi/mg prot/h) was markedly higher than that of samples subjected to WIT and AT. The product qualities observed after thawing at –1 °C to 1 °C, 5–7 °C and 8–10 °C under LT were comparable to that observed by RT. Considering its thawing efficiency and product quality, LT is a suitable method for the thawing of P. trituberculatus, and the ideal thawing conditions were LT at 2–4 °C.
Key words: Portunus trituberculatus    thawing    low temperature combined with high humidity    water-holding capacity    lipid oxidation    biochemical properties of myofibrillar protein
出版日期: 2021-07-19
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
凌建刚
宣晓婷
徐子涵
丁甜
林旭东
崔燕
刘东红

引用本文:

凌建刚, 宣晓婷, 徐子涵, 丁甜, 林旭东, 崔燕, 刘东红. Low-temperature combined with high-humidity thawing improves the water-holding capacity and biochemical properties of Portunus trituberculatus protein. Food Qual Safet, 2021, 5(1): 1-9.

链接本文:

http://www.zjujournals.com/fqs/CN/10.1093/fqsafe/fyab008        http://www.zjujournals.com/fqs/CN/Y2021/V5/I1/1

No related articles found!