基于时空注意力机制的轻量级脑纹识别算法
|
|
方芳,严军,郭红想,王勇
|
Lightweight brainprint recognition algorithm based on spatio-temporal attention mechanism
|
|
Fang FANG,Jun YAN,Hongxiang GUO,Yong WANG
|
|
| 表 6 Physionet数据集静息状态数据的比较 |
| Tab.6 Comparison of resting state data for Physionet dataset |
|
| 方法 | slot/s | N | EO | | EC | Np/106 | | ACC/% | EER/% | | ACC/% | EER/% | | 连通性网络[11] | 12 | 64 | 96.90 | 4.400 | | 92.60 | 6.500 | — | CNN-LSTM[29] CNN-LSTM[29] CNN-LSTM[29] CNN-LSTM[29] | 4 8 12 16 | 64 64 64 64 | 95.00 96.20 98.00 92.50 | — — — — | | 95.33 97.00 99.95 93.20 | — — — — | — — — — | COR+GCN[13] COR+GCN[13] COR+GCN[13] | 1 1 1 | 64 40 16 | 98.56 97.13 53.41 | — — — | | — — — | — — — | — — — | | FDF+SVM_RBF[30] | 10 | 64 | 97.22 | — | | — | — | — | | RF[31] | 2 | 64 | 98.16 | — | | 97.30 | — | — | | SVM[31] | 2 | 64 | 97.64 | — | | 96.02 | — | — | | MCL+马氏距离分类器[32] | 10 | 64 | 99.40 | 6.330 | | 98.80 | 10.500 | — | | CNN+数据增强[9] | 12 | 64 | — | — | | — | 0.190 | 300.82 | PLV+Gamma[12] PLV+Gamma[12] | 4 4 | 56 21 | 99.40 96.00 | — — | | — — | — — | — — | | ESTformer[33] | 10 | 64 | 94.61 | — | | — | — | 33.70 | | Autoencoder-CNN[34] | 8 | 64 | 99.45 | — | | 99.89 | — | — | 提出方法 提出方法 提出方法 提出方法 | 2 2 2 2 | 3 8 16 64 | 90.60 96.47 98.70 99.45 | 0.179 0.014 0.002 0.000 | | 90.16 96.74 97.53 99.01 | 0.137 0.011 0.005 0.000 | 0.29 0.29 0.30 0.33 |
|
|
|