基于时空注意力机制的轻量级脑纹识别算法
方芳,严军,郭红想,王勇

Lightweight brainprint recognition algorithm based on spatio-temporal attention mechanism
Fang FANG,Jun YAN,Hongxiang GUO,Yong WANG
表 6 Physionet数据集静息状态数据的比较
Tab.6 Comparison of resting state data for Physionet dataset
方法slot/sNEOECNp/106
ACC/%EER/%ACC/%EER/%
连通性网络[11]126496.904.40092.606.500
CNN-LSTM[29]
CNN-LSTM[29]
CNN-LSTM[29]
CNN-LSTM[29]
4
8
12
16
64
64
64
64
95.00
96.20
98.00
92.50



95.33
97.00
99.95
93.20






COR+GCN[13]
COR+GCN[13]
COR+GCN[13]
1
1
1
64
40
16
98.56
97.13
53.41








FDF+SVM_RBF[30]106497.22
RF[31]26498.1697.30
SVM[31]26497.6496.02
MCL+马氏距离分类器[32]106499.406.33098.8010.500
CNN+数据增强[9]12640.190300.82
PLV+Gamma[12]
PLV+Gamma[12]
4
4
56
21
99.40
96.00




ESTformer[33]106494.6133.70
Autoencoder-CNN[34]86499.4599.89
提出方法
提出方法
提出方法
提出方法
2
2
2
2
3
8
16
64
90.60
96.47
98.70
99.45
0.179
0.014
0.002
0.000
90.16
96.74
97.53
99.01
0.137
0.011
0.005
0.000
0.29
0.29
0.30
0.33