基于时空注意力机制的轻量级脑纹识别算法
|
|
方芳,严军,郭红想,王勇
|
Lightweight brainprint recognition algorithm based on spatio-temporal attention mechanism
|
|
Fang FANG,Jun YAN,Hongxiang GUO,Yong WANG
|
|
| 表 1 不同参数对2个数据集的不同状态数据的分类性能影响 |
| Tab.1 Effect of different parameter on classification performance for different state data of two datasets % |
|
| 实验参数 | 参数选择 | ACC±std | | Physionet-MI | Physionet-EO | Physionet-EC | DEAP | | 卷积核数 | (16,64) (64,128) | 99.43±0.15 99.97±0.09 | 98.13±0.17 99.45±0.15 | 97.32±0.41 99.01±0.30 | 100.00±0.02 100.00±0.00 | | 激活函数 | ELU SiLU GeLU ReLU | 99.95±0.11 99.96±0.10 99.97±0.10 99.97±0.09 | 98.64±0.23 98.70±0.21 99.15±0.17 99.45±0.15 | 98.26±0.39 98.34±0.36 97.35±0.45 99.01±0.30 | 99.92±0.08 100.00±0.01 100.00±0.00 100.00±0.00 | | 注意力 | GCT CA | 99.95±0.13 99.97±0.09 | 99.12±0.16 99.45±0.15 | 98.34±0.33 99.01±0.30 | 100.00±0.01 100.00±0.00 | | 池化层 | AvgPool2d MaxPool2d | 99.97±0.10 99.97±0.09 | 98.94±0.18 99.45±0.15 | 98.59±0.33 99.01±0.30 | 100.00±0.00 100.00±0.00 | | Dropout | 0.25 0.5 | 99.91±0.12 99.97±0.09 | 99.06±0.16 99.45±0.15 | 98.77±0.32 99.01±0.30 | 100.00±0.01 100.00±0.00 |
|
|
|