基于时空注意力机制的轻量级脑纹识别算法
方芳,严军,郭红想,王勇

Lightweight brainprint recognition algorithm based on spatio-temporal attention mechanism
Fang FANG,Jun YAN,Hongxiang GUO,Yong WANG
表 1 不同参数对2个数据集的不同状态数据的分类性能影响
Tab.1 Effect of different parameter on classification performance for different state data of two datasets %
实验参数参数选择ACC±std
Physionet-MIPhysionet-EOPhysionet-ECDEAP
卷积核数(16,64)
(64,128)
99.43±0.15
99.97±0.09
98.13±0.17
99.45±0.15
97.32±0.41
99.01±0.30
100.00±0.02
100.00±0.00
激活函数ELU
SiLU
GeLU
ReLU
99.95±0.11
99.96±0.10
99.97±0.10
99.97±0.09
98.64±0.23
98.70±0.21
99.15±0.17
99.45±0.15
98.26±0.39
98.34±0.36
97.35±0.45
99.01±0.30
99.92±0.08
100.00±0.01
100.00±0.00
100.00±0.00
注意力GCT
CA
99.95±0.13
99.97±0.09
99.12±0.16
99.45±0.15
98.34±0.33
99.01±0.30
100.00±0.01
100.00±0.00
池化层AvgPool2d
MaxPool2d
99.97±0.10
99.97±0.09
98.94±0.18
99.45±0.15
98.59±0.33
99.01±0.30
100.00±0.00
100.00±0.00
Dropout0.25
0.5
99.91±0.12
99.97±0.09
99.06±0.16
99.45±0.15
98.77±0.32
99.01±0.30
100.00±0.01
100.00±0.00