线控转向系统线性自抗扰控制器的群智能优化
|
|
魏萱,黄鹤,杨澜,王会峰,高涛
|
Swarm intelligence optimization of linear active disturbance rejection controller for steer-by-wire system
|
|
Xuan WEI,He HUANG,Lan YANG,Huifeng WANG,Tao GAO
|
|
| 表 1 算法性能测试的基准函数 |
| Tab.1 Benchmark function for algorithm performance test |
|
| 函数 | 表达式 | 取值范围 | | Sphere | $f({\boldsymbol{x}}) = \displaystyle \sum\nolimits_{i = 1}^n {x_i^2} $ | [−100,100]n | | Schwefel 2.22 | $f({\boldsymbol{x}}) = \displaystyle \sum\nolimits_{i = 1}^n {\left| {{x_i}} \right|} + \displaystyle \prod\nolimits_{i = 1}^n {\left| {{x_i}} \right|} $ | [−10,10]n | | Schwefel 1.2 | $f({\boldsymbol{x}}) = {\displaystyle \sum\nolimits_{i = 1}^n {\left( {\displaystyle \sum\nolimits_{j = 1}^i {{x_j}} } \right)} ^2}$ | [−100,100]n | | Schwefel 2.21 | $f({\boldsymbol{x}}) = {\max _i}\left\{ {\left| {{x_i}} \right|,1 \leqslant i \leqslant n} \right\}$ | [−100,100]n | | Schwefel | $f({\boldsymbol{x}}) = - \displaystyle \sum\nolimits_{i = 1}^n {\left( {{x_i}\sin {\sqrt {\left| {{x_i}} \right|} } } \right)} $ | [−500,500]n | | Ackley | $\begin{gathered} f({\boldsymbol{x}}) = - 20\exp \left( { - 0.2\sqrt {{n}^{-1}\sum\nolimits_{i = 1}^n {x_i^2} } } \right) - \exp \left( {{n}^{-1}\sum\nolimits_{i = 1}^n {\cos\; (2{\text{π}}{x_i}}) } \right)+20+{\text{e}} \\ \end{gathered} $ | [−32,32]n |
|
|
|