轻量级改进RT-DETR的葡萄叶片病害检测算法
刘慧,王防修,王意,黄淄博,苏晨

Lightweight improved RT-DETR algorithm for grape leaf disease detection
Hui LIU,Fangxiu WANG,Yi WANG,Zibo HUANG,Chen SU
表 6 不同模型的对比实验结果
Tab.6 Comparison experimental result of different models
模型P/%R/%mAP@0.5/%${N_{\text{P}}}$/106$v$/(帧⋅s−1)FLOPs/109
SSD(2016)80.776.783.126.232.562.6
Faster R-CNN(2016)81.675.382.841.312.9212.8
EfficientDet(2020)83.778.684.533.413.4260.7
YOLOv7[29](2022)89.888.792.636.482.8103.2
YOLOv8s(2023)91.089.593.011.1122.328.4
YOLOv9s[30](2024)89.488.192.19.698.738.7
YOLOv10s[31](2024)90.687.792.58.1130.224.5
YOLOv11s[32](2024)91.288.693.19.4124.221.3
Deformable DETR(2020)89.188.091.039.910.8179.6
DINO(2022)89.487.992.346.77.3279.2
MS-DETR(2023)89.688.592.353.530.59117.1
RT-DETR(2023)89.087.491.119.967.257.0
SCGI-DETR(本文方法)91.689.893.410.766.720.5