基于多尺度编码器融合的三维人体姿态估计算法
|
|
包晓安,陈恩琳,张娜,涂小妹,吴彪,张庆琪
|
3D human pose estimation based on multi-scale encoder fusion
|
|
Xiaoan BAO,Enlin CHEN,Na ZHANG,Xiaomei TU,Biao WU,Qingqi ZHANG
|
|
| 表 2 协议1下MSEFN与不同方法在Human3.6M数据集上的MPJPE结果对比(基于GT检测姿态输入) |
| Tab.2 Comparison of MPJPE result of MSEFN and different methods under protocol 1 on Human3.6M dataset (based on GT-detected pose input) |
|
| GT 协议1 | 会议名 | MPJPE/mm | | Dir. | Disc. | Eat. | Grceet | Phone | Photo | Pose | Punch. | Sit | SitD. | Somke | Wait | WalkD. | Walk | WalkT. | 平均值 | | PoseFormer [13] (f = 81) | ICCV’21 | 30.0 | 33.6 | 29.9 | 31.0 | 30.2 | 33.3 | 34.8 | 31.4 | 37.8 | 38.6 | 31.7 | 31.5 | 29.0 | 23.3 | 23.1 | 31.3 | | MHFormer [21] (f =351) | CVPR’22 | 27.7 | 32.1 | 29.1 | 28.9 | 30.0 | 33.9 | 33.0 | 31.2 | 37 | 39.3 | 30.0 | 31.0 | 29.4 | 22.2 | 23.0 | 30.5 | | POT[36] (f = 81) | AAAI’23 | 32.9 | 38.3 | 28.3 | 33.8 | 34.9 | 38.7 | 37.2 | 30.7 | 34.5 | 39.7 | 33.9 | 34.7 | 34.3 | 26.1 | 28.9 | 33.8 | | MSEFN (f =81,kf = 27) | — | 27.1 | 28.0 | 25.3 | 26.5 | 24.6 | 27.7 | 29.8 | 26.0 | 31.3 | 33.6 | 26.5 | 28.7 | 28.1 | 16.3 | 18.3 | 26.5 |
|
|
|