基于多尺度编码器融合的三维人体姿态估计算法
|
|
包晓安,陈恩琳,张娜,涂小妹,吴彪,张庆琪
|
3D human pose estimation based on multi-scale encoder fusion
|
|
Xiaoan BAO,Enlin CHEN,Na ZHANG,Xiaomei TU,Biao WU,Qingqi ZHANG
|
|
| 表 1 协议1、协议2下MSEFN与不同方法在Human3.6M数据集上的MPJPE结果 (基于CPN检测输入) |
| Tab.1 Comparison of MPJPE result of MSEFN and different methods under protocol 1 and protocol 2 on Human3.6M dataset (based on CPN-detected input) |
|
| CPN 协议1 | 会议名 | MPJPE/mm | | Dir. | Disc. | Eat. | Grceet | Phone | Photo | Pose | Punch. | Sit | SitD. | Somke | Wait | WalkD. | Walk | WalkT. | 平均值 | | 文献[32] (f= 243) | CVPR’18 | 45.2 | 46.7 | 43.3 | 45.6 | 48.1 | 55.1 | 44.6 | 44.3 | 57.3 | 65.8 | 47.1 | 44 | 49 | 32.8 | 33.9 | 46.8 | | 文献[33] | NeurIPS’19 | 44.8 | 46.1 | 43.3 | 46.4 | 49.0 | 55.2 | 44.6 | 44 | 58.3 | 62.7 | 47.1 | 43.9 | 48.6 | 32.7 | 33.3 | 46.7 | | 文献[9] (f = 243) | CVPR’20 | 41.8 | 44.8 | 41.1 | 44.9 | 47.4 | 54.1 | 43.4 | 42.2 | 56.2 | 63.6 | 45.3 | 43.5 | 45.3 | 31.3 | 32.2 | 45.1 | | SRNet[11] | ECCV’20 | 46.6 | 47.1 | 43.9 | 41.6 | 45.8 | 49.6 | 46.5 | 40.0 | 53.4 | 61.1 | 46.1 | 42.6 | 43.1 | 31.5 | 32.6 | 44.8 | | UGCN[34] (f= 96) | ECCV’20 | 41.3 | 43.9 | 44.0 | 42.2 | 48.0 | 57.1 | 42.2 | 43.2 | 57.3 | 61.3 | 47.0 | 43.5 | 47.0 | 32.6 | 31.8 | 45.6 | | 文献[8] (f = 81) | TCSVT’21 | 42.1 | 43.8 | 41.0 | 43.8 | 46.1 | 53.5 | 42.4 | 43.1 | 53.9 | 60.5 | 45.7 | 42.1 | 46.2 | 32.2 | 33.8 | 44.6 | | PoseFormer[13] (f =81) | ICCV’21 | 41.5 | 44.8 | 39.8 | 42.5 | 46.5 | 51.6 | 42 | 42 | 53.3 | 60.7 | 45.5 | 43.3 | 46.1 | 31.8 | 32.2 | 44.3 | | MHFormer[21] (f =351) | CVPR’22 | 39.2 | 43.1 | 40.1 | 40.9 | 44.9 | 51.2 | 40.6 | 41.3 | 53.5 | 60.3 | 43.7 | 41.1 | 43.8 | 29.8 | 30.6 | 43.0 | | MixSTE[15] (f =243) | CVPR’22 | 37.6 | 40.9 | 37.3 | 39.7 | 42.3 | 49.9 | 40.1 | 39.8 | 51.7 | 55.0 | 42.1 | 39.8 | 41.0 | 27.9 | 27.9 | 40.9 | | KTPFormer[30] (f =243) | CVPR’24 | 37.3 | 39.2 | 35.9 | 37.6 | 42.5 | 48.2 | 38.6 | 39.0 | 51.4 | 55.9 | 41.6 | 39.0 | 40.0 | 27.0 | 27.4 | 40.1 | | TCPFormer[31] (f =81) | CVPR’25 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | 40.5 | | MSEFN (f =81,kf = 27) | — | 36.8 | 39.9 | 35.8 | 39.1 | 41.0 | 47.5 | 37.5 | 37.6 | 51.5 | 47.9 | 39.8 | 38.2 | 42.1 | 25.6 | 26.8 | 39.8 | | | CPN 协议2 | 会议名 | MPJPE/mm | | Dir. | Disc. | Eat. | Grceet | Phone | Photo | Pose | Punch. | Sit | SitD. | Somke | Wait | WalkD. | Walk | WalkT. | 平均值 | | 文献[7] | CVPR’18 | 34.7 | 39.8 | 41.8 | 38.6 | 42.5 | 47.5 | 38.0 | 36.6 | 50.7 | 56.8 | 42.6 | 39.6 | 43.9 | 32.1 | 36.5 | 41.8 | | 文献[35] (f = 7) | ICCV’19 | 35.7 | 37.8 | 36.9 | 40.7 | 39.6 | 45.2 | 37.4 | 34.5 | 46.9 | 50.1 | 40.5 | 36.1 | 41.0 | 29.6 | 32.3 | 39.0 | | 文献[9] (f = 243) | CVPR’20 | 32.3 | 35.2 | 33.3 | 35.8 | 35.9 | 41.5 | 33.2 | 32.7 | 44.6 | 50.9 | 37.0 | 32.4 | 37.0 | 25.2 | 27.2 | 35.6 | | UGCN[34] (f = 96) | ECCV’20 | 32.9 | 35.,2 | 35.6 | 34.4 | 364 | 42.7 | 31.2 | 32.5 | 45.6 | 50.2 | 37.3 | 32.8 | 36.3 | 26.0 | 23.9 | 35.5 | | PoseFormer[13] (f =81) | ICCV’21 | 32.5 | 34,8 | 32.6 | 34.6 | 35.3 | 39.5 | 32.1 | 32.0 | 42.8 | 48.5 | 34.8 | 32.4 | 35.3 | 24.5 | 26 | 34.6 | | MHFormer[21] (f =351) | CVPR’22 | 31.5 | 34.9 | 32.8 | 33.6 | 35.3 | 39.6 | 32.0 | 32.2 | 43.5 | 48.1 | 36.4 | 32.6 | 34.3 | 23.9 | 25.1 | 34.4 | | MixSTE[15] (f =243) | CVPR’22 | 30.8 | 33.1 | 30.3 | 31.8 | 33.1 | 39.1 | 31.1 | 30.5 | 42.5 | 44.5 | 34.0 | 30.8 | 32.7 | 22.1 | 22.9 | 32.6 | | KTPFormer[30] (f =243) | CVPR’24 | 30.1 | 32.3 | 29.6 | 30.8 | 32.3 | 37.3 | 30.0 | 30.2 | 41.0 | 45.3 | 33.6 | 29.9 | 31.4 | 21.5 | 22.6 | 31.9 | | TCPFormer[31] (f =81) | CVPR’25 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | 33.7 | | MSEFN (f =81,kf = 27) | — | 27.5 | 30.5 | 28.5 | 31.8 | 31.5 | 36.4 | 28.5 | 28 | 41.7 | 46.6 | 32 | 28.3 | 31.8 | 19.8 | 21.3 | 31.0 |
|
|
|