基于改进CNN-LSTM的挖掘机作业对象识别
|
|
胡从裕,殷晨波,马伟,杨超,颜士宽
|
Object recognition of excavator operation based on improved CNN-LSTM
|
|
Congyu HU,Chenbo YIN,Wei MA,Chao YANG,Shikuan YAN
|
|
| 表 8 不同模型在各特征集上的性能指标 |
| Tab.8 Performance indicator of different models on each feature set |
|
| 模型 | 特征集 | A | P | R | F1 | | HBA-CNN | S1 | 0.9308 | 0.9398 | 0.9383 | 0.9384 | | S2 | 0.9287 | 0.9223 | 0.9225 | 0.9224 | | S3 | 0.9325 | 0.9227 | 0.9323 | 0.9373 | | S4 | 0.8798 | 0.8791 | 0.8792 | 0.8896 | | HBA-GRU | S1 | 0.8763 | 0.8877 | 0.8919 | 0.8762 | | S2 | 0.8621 | 0.8616 | 0.8620 | 0.8613 | | S3 | 0.8719 | 0.8716 | 0.8717 | 0.8712 | | S4 | 0.7443 | 0.7453 | 0.7442 | 0.7434 | | HBA-LSTM | S1 | 0.9502 | 0.9560 | 0.9571 | 0.9566 | | S2 | 0.9330 | 0.9332 | 0.9347 | 0.9339 | | S3 | 0.9474 | 0.9407 | 0.9484 | 0.9445 | | S4 | 0.9289 | 0.9304 | 0.9352 | 0.9336 | HBA-CNN- LSTM-Attention | S1 | 0.9821 | 0.9811 | 0.9813 | 0.9812 | | S2 | 0.9784 | 0.9786 | 0.9773 | 0.9775 | | S3 | 0.9796 | 0.9781 | 0.9762 | 0.9771 | | S4 | 0.9243 | 0.9151 | 0.9202 | 0.9176 |
|
|
|