基于分阶段语义感知的事件抽取大语言模型框架
|
|
李延松,陈宁,刘锋光,陈盼,黄晓峰,葛慧丽
|
Large language model framework for event extraction based on staged semantic perception
|
|
Yansong LI,Ning CHEN,Fengguang LIU,Pan CHEN,Xiaofeng HUANG,Huili GE
|
|
| 表 2 在ACE05和CASIE数据集上的模型性能对比 |
| Tab.2 Model performance comparison between ACE05 and CASIE dataset |
|
| 方法 | 主干网络 | 模型参数规模 | CASIE | | ACE05 | | F1e/% | F1a/% | | F1e/% | F1a/% | | Bert-base | BERT-base | 110×106 | 68.98 | 60.37 | | 72.50 | 59.50 | | EEQA | 2×BERT-base | 220×106 | — | — | | 72.40 | 53.30 | | UIE | T5-v1.1-base | 770×106 | 69.33 | 61.30 | | 73.36 | 54.79 | | USM | RoBERTa-Large | 355×106 | 71.73 | 63.26 | | 72.41 | 55.83 | | InstructUIE | FlanT5-11B | 11×109 | 67.80 | 63.53 | | 77.13 | 72.94 | | Schema-Aware-EE | ChatGPT | > 20×109 | 70.28 | 56.28 | | 73.68 | 49.56 | | LC4EE | GPT-4 | > 175×109 | — | — | | 77.20 | 54.90 | | TALOR-EE | GPT-3.5-turbo | > 20×109 | — | — | | 70.50 | 47.70 | | 本文方法 | ChatGLM3 | 6×109 | 90.93 | 63.71 | | 76.56 | 72.07 | | 本文方法 | GLM4-9B-0414 | 9×109 | 93.40 | 66.87 | | 77.81 | 76.52 |
|
|
|