基于多头自注意力-Bi-LSTM模型的盾构掘进引发的土体沉降预测
杨明辉,宋牧原,付大喜,郭炎伟,卢贤锥,张文聪,郑伟龙

Prediction of shield tunneling-induced soil settlement based on multi-head self-attention-Bi-LSTM model
Minghui YANG,Muyuan SONG,Daxi FU,Yanwei GUO,Xianzhui LU,Wencong ZHANG,Weilong ZHENG
表 4 不同深度学习模型在不同监测点的土体沉降预测泰勒图参数值(案例1)
Tab.4 Taylor diagram metrics of soil settlement predictions by different deep learning models at various monitoring points
监测点模型SD/mmRCRMSD/mm
预测真实
Y310.18580.18170.94810.0593
20.19150.18170.89350.0866
30.19760.18170.76390.1311
Y410.17510.17000.95900.0497
20.10310.17000.91290.0868
30.05760.17000.81000.1279
Y510.05710.05840.95820.0168
20.04060.05840.78150.0368
30.17470.05840.79850.1327