基于多尺度滑窗注意力时序卷积网络的脑电信号分类
李宪华,杜鹏飞,宋韬,邱洵,蔡钰

EEG signal classification based on multi-scale sliding-window attention temporal convolutional networks
Xianhua LI,Pengfei DU,Tao SONG,Xun QIU,Yu CAI
表 2 不同分类方法在BCI Competition IV 2b数据集上的分类准确率
Tab.2 Classification accuracy of different methods on BCI Competition IV 2b dataset
分类方法Acc /%$\overline{\mathrm{Acc}} $/%Kapp
B01B02B03B04B05B06B07B08B09
FBCSP70.0060.3660.9497.5093.1280.6378.1392.5086.8880.000.600.0100
ConvNet78.5650.0051.5696.8893.1385.3183.7591.5685.6279.370.590.0039
EEGNet75.9457.6458.4398.1381.2588.7584.0693.4489.6980.480.610.0039
DRDA83.3762.8663.6395.9493.5688.1985.0095.2590.0083.980.680.0273
IFBCLNet79.8280.4073.0497.7196.3388.8490.0893.4790.2087.760.760.4961
Conformer82.5065.7163.7598.4486.5690.3187.8194.3892.1984.630.691.0000
MSWATCN84.0663.2180.9398.1596.2589.6987.5093.7591.8887.270.75