基于多尺度滑窗注意力时序卷积网络的脑电信号分类
|
|
李宪华,杜鹏飞,宋韬,邱洵,蔡钰
|
EEG signal classification based on multi-scale sliding-window attention temporal convolutional networks
|
|
Xianhua LI,Pengfei DU,Tao SONG,Xun QIU,Yu CAI
|
|
| 表 2 不同分类方法在BCI Competition IV 2b数据集上的分类准确率 |
| Tab.2 Classification accuracy of different methods on BCI Competition IV 2b dataset |
|
| 分类方法 | Acc /% | $\overline{\mathrm{Acc}} $/% | Kap | p | | B01 | B02 | B03 | B04 | B05 | B06 | B07 | B08 | B09 | | FBCSP | 70.00 | 60.36 | 60.94 | 97.50 | 93.12 | 80.63 | 78.13 | 92.50 | 86.88 | 80.00 | 0.60 | 0.0100 | | ConvNet | 78.56 | 50.00 | 51.56 | 96.88 | 93.13 | 85.31 | 83.75 | 91.56 | 85.62 | 79.37 | 0.59 | 0.0039 | | EEGNet | 75.94 | 57.64 | 58.43 | 98.13 | 81.25 | 88.75 | 84.06 | 93.44 | 89.69 | 80.48 | 0.61 | 0.0039 | | DRDA | 83.37 | 62.86 | 63.63 | 95.94 | 93.56 | 88.19 | 85.00 | 95.25 | 90.00 | 83.98 | 0.68 | 0.0273 | | IFBCLNet | 79.82 | 80.40 | 73.04 | 97.71 | 96.33 | 88.84 | 90.08 | 93.47 | 90.20 | 87.76 | 0.76 | 0.4961 | | Conformer | 82.50 | 65.71 | 63.75 | 98.44 | 86.56 | 90.31 | 87.81 | 94.38 | 92.19 | 84.63 | 0.69 | 1.0000 | | MSWATCN | 84.06 | 63.21 | 80.93 | 98.15 | 96.25 | 89.69 | 87.50 | 93.75 | 91.88 | 87.27 | 0.75 | — |
|
|
|