基于多尺度滑窗注意力时序卷积网络的脑电信号分类
李宪华,杜鹏飞,宋韬,邱洵,蔡钰

EEG signal classification based on multi-scale sliding-window attention temporal convolutional networks
Xianhua LI,Pengfei DU,Tao SONG,Xun QIU,Yu CAI
表 1 不同分类方法在BCI Competition IV 2a数据集上的分类准确率
Tab.1 Classification accuracy of different methods on BCI Competition IV 2a dataset
分类方法Acc/%$\overline{\mathrm{Acc}} $/%Kapp
A01A02A03A04A05A06A07A08A09
FBCSP76.0056.5081.2561.0055.0045.2582.7581.2570.7567.750.570.0001
ConvNet76.3955.2189.2474.6556.9454.1792.7177.0876.3972.530.630.0022
EEGNet85.7661.4688.5467.0155.9052.0889.5883.3379.5174.500.660.0031
DRDA83.1955.1487.4375.2862.2957.1586.1883.6182.0074.750.660.0014
IFBCLNet87.1858.6592.6778.0770.6560.4692.4182.2886.7478.790.720.0960
Conformer88.1961.4693.4078.1352.0865.2892.3688.1988.8978.660.720.5140
MSWATCN89.2464.5893.4074.6573.2662.8593.7585.4286.4680.400.74