基于多尺度滑窗注意力时序卷积网络的脑电信号分类
|
|
李宪华,杜鹏飞,宋韬,邱洵,蔡钰
|
EEG signal classification based on multi-scale sliding-window attention temporal convolutional networks
|
|
Xianhua LI,Pengfei DU,Tao SONG,Xun QIU,Yu CAI
|
|
| 表 1 不同分类方法在BCI Competition IV 2a数据集上的分类准确率 |
| Tab.1 Classification accuracy of different methods on BCI Competition IV 2a dataset |
|
| 分类方法 | Acc/% | $\overline{\mathrm{Acc}} $/% | Kap | p | | A01 | A02 | A03 | A04 | A05 | A06 | A07 | A08 | A09 | | FBCSP | 76.00 | 56.50 | 81.25 | 61.00 | 55.00 | 45.25 | 82.75 | 81.25 | 70.75 | 67.75 | 0.57 | 0.0001 | | ConvNet | 76.39 | 55.21 | 89.24 | 74.65 | 56.94 | 54.17 | 92.71 | 77.08 | 76.39 | 72.53 | 0.63 | 0.0022 | | EEGNet | 85.76 | 61.46 | 88.54 | 67.01 | 55.90 | 52.08 | 89.58 | 83.33 | 79.51 | 74.50 | 0.66 | 0.0031 | | DRDA | 83.19 | 55.14 | 87.43 | 75.28 | 62.29 | 57.15 | 86.18 | 83.61 | 82.00 | 74.75 | 0.66 | 0.0014 | | IFBCLNet | 87.18 | 58.65 | 92.67 | 78.07 | 70.65 | 60.46 | 92.41 | 82.28 | 86.74 | 78.79 | 0.72 | 0.0960 | | Conformer | 88.19 | 61.46 | 93.40 | 78.13 | 52.08 | 65.28 | 92.36 | 88.19 | 88.89 | 78.66 | 0.72 | 0.5140 | | MSWATCN | 89.24 | 64.58 | 93.40 | 74.65 | 73.26 | 62.85 | 93.75 | 85.42 | 86.46 | 80.40 | 0.74 | — |
|
|
|