知识嵌入增强的对比推荐模型
谢涛,葛慧丽,陈宁,汪晓锋,李延松,黄晓峰

Knowledge embedding-enhanced contrastive recommendation model
Tao XIE,Huili GE,Ning CHEN,Xiaofeng WANG,Yansong LI,Xiaofeng HUANG
表 2 基于Recall@K指标的推荐算法性能比较
Tab.2 Performance comparison of recommendation algorithms based on Recall@K metrics
模型Recall@10Recall@20Recall@30
Yelp2018Amazon-BookMINDYelp2018Amazon-BookMINDYelp2018Amazon-BookMIND
KGAT[26]0.036 50.089 20.051 80.067 50.139 00.090 70.082 70.163 80.120 3
KGIN[27]0.043 50.106 20.065 20.071 20.143 60.104 40.094 90.177 40.134 3
CKAN[28]0.039 10.087 80.059 70.068 90.138 00.099 10.085 30.162 20.128 5
KGCL[32]0.045 50.098 90.067 60.075 60.149 60.107 30.099 90.179 50.135 9
MGDCF[29]0.041 20.104 60.067 10.079 10.155 00.106 60.102 90.181 30.136 9
本研究方法0.051 90.115 20.071 90.085 80.169 10.115 10.112 30.203 70.141 2