面向无人驾驶的零样本记忆感知选择视觉跟踪模型
|
|
李杰,汪诗敏,王长城,崔亚峰,汪俊杰,周惟嘉,胡铮,兰海,杜玲,高猛
|
Zero-shot memory-aware selection visual tracking model for unmanned driving
|
|
Jie LI,Shimin WANG,Changcheng WANG,Yafeng CUI,Junjie WANG,Weijia ZHOU,Zheng HU,Hai LAN,Ling DU,Meng GAO
|
|
| 表 1 不同数据集上各算法的视觉目标跟踪结果对比 |
| Tab.1 Comparison of visual object tracking results of various algorithms on different datasets |
|
| 算法 | LaSOT | | GOT-10k | | OTB100 | | $ {P}_{\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}} $/% | AUC/% | P/% | | AO/% | $ {\mathrm{O}\mathrm{P}}_{0.50} $/% | $ {\mathrm{O}\mathrm{P}}_{0.75} $/% | | $ {S}_{\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}} $/% | AUC/% | P/% | | HIPTrack-B384[28] | 82.9 | 72.7 | 79.5 | | 77.4 | 88.0 | 74.5 | | 79.2 | 71.0 | 80.2 | | AQATrack-B256[29] | 81.9 | 71.4 | 78.6 | | 73.8 | 83.2 | 72.1 | | 76.4 | 72.8 | 83.1 | | ODTrack-B384[30] | 83.2 | 73.2 | 80.6 | | 77.0 | 87.9 | 75.1 | | 75.6 | 73.0 | 81.8 | | LoRAT-B224[31] | 80.9 | 71.7 | 77.3 | | 72.1 | 84.9 | 75.0 | | 80.4 | 72.3 | 82.5 | | OSTrack384[15] | 81.1 | 71.1 | 77.6 | | 73.7 | 83.2 | 70.8 | | 77.6 | 55.9 | 75.8 | | SiamPRN++[32] | 56.9 | 49.6 | 49.1 | | 51.7 | 61.6 | 32.5 | | 72.9 | 69.2 | 77.6 | | DiMP288[33] | 64.1 | 56.3 | 56.0 | | 61.1 | 71.7 | 49.2 | | 66.4 | 74.3 | 78.4 | | Zero-shot | 82.7 | 75.3 | 82.8 | | 79.6 | 90.8 | 79.2 | | 81.7 | 74.8 | 84.9 |
|
|
|