基于SMPL模态分解与嵌入融合的多模态步态识别
|
|
吴越,梁铮,高巍,杨茂达,赵培森,邓红霞,常媛媛
|
Multi-modal gait recognition based on SMPL model decomposition and embedding fusion
|
|
Yue WU,Zheng LIANG,Wei GAO,Maoda YANG,Peisen ZHAO,Hongxia DENG,Yuanyuan CHANG
|
|
| 表 3 不同方法在Gait3D数据集上识别性能的对比结果 |
| Tab.3 Comparison results of different methods on Gait3D dataset |
|
| 模态 | 方法 | 来源 | Rank-1 | Rank-5 | mAP/% | mINP/% | | 轮廓 | GaitSet[5] | AAAI2019 | 36.70 | 58.30 | 30.01 | 17.30 | | GaitPart[6] | CVPR2020 | 28.20 | 47.60 | 21.58 | 12.36 | | GaitGL[8] | ICCV2021 | 29.70 | 48.50 | 22.29 | 13.26 | | GaitGCI[9] | CVPR2023 | 50.30 | 68.50 | 39.50 | 24.30 | | GaitBase[10] | CVPR2023 | 64.20 | 79.50 | 54.51 | 36.36 | | DyGait[11] | ICCV2023 | 66.30 | 80.80 | 56.40 | 37.30 | | 骨骼 | GaitGraph[13] | ICIP2021 | 8.30 | 16.60 | 7.14 | 4.80 | | GPGait[14] | ICCV2023 | 22.50 | — | — | — | 轮廓+ 骨骼/SMPL | MSAFF[17] | IJCB2023 | 48.10 | 66.60 | 38.45 | 23.49 | | GaitRef[18] | IJCB2023 | 49.00 | 69.30 | 40.69 | 25.26 | | GaitSTR[19] | T-BIOM2024 | 65.10 | 81.30 | 55.59 | 36.84 | | SMPLGait[20] | CVPR2022 | 46.30 | 64.50 | 37.16 | 22.23 | | HybirdGait[21] | AAAI2024 | 53.30 | 72.00 | 43.29 | 26.65 | | DFGait | 本研究 | 70.40 | 85.00 | 61.04 | 41.27 |
|
|
|