面向动态交通流量预测的自适应图注意Transformer
刘宇轩,刘毅志,廖祝华,邹正标,汤璟昕

Adaptive graph attention Transformer for dynamic traffic flow prediction
Yuxuan LIU,Yizhi LIU,Zhuhua LIAO,Zhengbiao ZOU,Jingxin TANG
表 2 PEMS04数据集上不同模型的RMSE和MAE对比结果
Tab.2 Comparison results of RMSE and MAE for different models on PEMS04 dataset
模型Tp=15 minTp=30 minTp=45 minTp=60 min
RMSEMAERMSEMAERMSEMAERMSEMAE
STGCN30.4919.9833.2321.4636.8724.4839.4126.93
T-GCN29.3920.3232.7921.9436.2724.0639.8827.27
DCRNN28.6519.0632.7222.0935.7423.8941.1928.51
DMSTGCN28.0218.8131.4621.0234.3822.6438.6726.15
Trendformer27.4718.6230.5920.5633.5322.3234.1723.54
STTN26.9517.9829.7619.4831.2821.7633.3522.43
ATST-GCN27.3218.4530.1920.0730.2421.0332.4922.17
MSAGAFormer25.7816.3327.5117.4227.1317.9428.8918.76