面向动态交通流量预测的自适应图注意Transformer
|
|
刘宇轩,刘毅志,廖祝华,邹正标,汤璟昕
|
Adaptive graph attention Transformer for dynamic traffic flow prediction
|
|
Yuxuan LIU,Yizhi LIU,Zhuhua LIAO,Zhengbiao ZOU,Jingxin TANG
|
|
| 表 2 PEMS04数据集上不同模型的RMSE和MAE对比结果 |
| Tab.2 Comparison results of RMSE and MAE for different models on PEMS04 dataset |
|
| 模型 | Tp=15 min | | Tp=30 min | | Tp=45 min | | Tp=60 min | | RMSE | MAE | | RMSE | MAE | | RMSE | MAE | | RMSE | MAE | | STGCN | 30.49 | 19.98 | | 33.23 | 21.46 | | 36.87 | 24.48 | | 39.41 | 26.93 | | T-GCN | 29.39 | 20.32 | | 32.79 | 21.94 | | 36.27 | 24.06 | | 39.88 | 27.27 | | DCRNN | 28.65 | 19.06 | | 32.72 | 22.09 | | 35.74 | 23.89 | | 41.19 | 28.51 | | DMSTGCN | 28.02 | 18.81 | | 31.46 | 21.02 | | 34.38 | 22.64 | | 38.67 | 26.15 | | Trendformer | 27.47 | 18.62 | | 30.59 | 20.56 | | 33.53 | 22.32 | | 34.17 | 23.54 | | STTN | 26.95 | 17.98 | | 29.76 | 19.48 | | 31.28 | 21.76 | | 33.35 | 22.43 | | ATST-GCN | 27.32 | 18.45 | | 30.19 | 20.07 | | 30.24 | 21.03 | | 32.49 | 22.17 | | MSAGAFormer | 25.78 | 16.33 | | 27.51 | 17.42 | | 27.13 | 17.94 | | 28.89 | 18.76 |
|
|
|