基于异常特征对抗学习的工业图像异常检测方法
王天飞,周文俊,项圣,贺宇航,彭博

Industrial image anomaly detection method based on adversarial learning of abnormal features
Tianfei WANG,Wenjun ZHOU,Sheng XIANG,Yuhang HE,Bo PENG
表 5 消融实验图像级/像素级AUROC结果
Tab.5 Image- and piexl-level AUROC results of ablation experiment
类别AUROC
设计1设计2设计3
1)注:斜线前、后数据分别表示图像级以及像素级AUROC结果
bottle98.2/69.71)96.8/97.297.2/98.5
capsule77.5/63.794.9/91.097.0/97.3
grid75.6/66.3100.0/99.4100.0/99.6
leather83.1/57.7100.0/97.4100.0/99.9
pill89.0/65.796.2/96.498.2/97.5
tile98.5/78.799.8/99.3100.0/98.6
transistor91.4/59.692.7/88.996.3/92.1
zipper94.3/64.2100.0/98.4100.0/99.1
cable54.0/69.488.3/93.486.2/96.7
carpet52.5/56.190.6/93.897.6/99.2
hazelnut94.3/64.299.9/99.6100.0/98.8
metalnut89.5/86.599.0/99.198.9/97.8
screw84.5/54.697.3/99.596.6/98.9
toothbrush86.6/76.9100.0/97.7100.0/97.9
wood91.0/67.999.6/94.997.6/94.5
平均84.0/66.7597.0/96.498.2/97.8