基于异常特征对抗学习的工业图像异常检测方法
|
|
王天飞,周文俊,项圣,贺宇航,彭博
|
Industrial image anomaly detection method based on adversarial learning of abnormal features
|
|
Tianfei WANG,Wenjun ZHOU,Sheng XIANG,Yuhang HE,Bo PENG
|
|
| 表 3 不同方法像素级AU-PR结果对比 |
| Tab.3 Pixel-level AU-PR comparison results for different models |
|
| 类别 | US[9] | AE-SSIM | RIAD | PaDim | CutPaste | CLGAN | MB-PFM | ATSNM | 本研究算法 | | bottle | 74.2 | — | 76.4 | 73.0 | 77.9 | 79.6 | 76.7 | 78.7 | 86.6 | | capsule | 25.9 | — | 38.2 | 33.4 | 32.3 | 69.6 | 46.2 | 52.7 | 72.8 | | grid | 10.1 | — | 36.4 | 58.0 | 42.6 | 64.9 | 45.3 | 45.1 | 68.5 | | leather | 40.9 | — | 49.1 | 45.2 | 54.6 | 75.4 | 46.8 | 57.4 | 76.3 | | pill | 62.0 | — | 51.6 | 60.2 | 51.8 | 76.3 | 78.6 | 66.4 | 72.5 | | tile | 65.3 | — | 52.6 | 51.7 | 67.2 | 87.6 | 80.3 | 89.1 | 95.6 | | transistor | 27.1 | — | 39.2 | 71.3 | 70.8 | 67.7 | 56.8 | 70.3 | 77.5 | | zipper | 36.1 | — | 63.4 | 16.6 | 68.5 | 68.7 | 55.6 | 72.6 | 86.3 | | cable | 48.2 | — | 24.4 | 34.3 | 55.6 | 73.8 | 67.7 | 69.4 | 75.3 | | carpet | 52.2 | — | 61.4 | 49.7 | 57.3 | 87.6 | 58.3 | 80.2 | 90.7 | | hazelnut | 57.8 | — | 33.8 | 37.4 | 53.7 | 68.4 | 60.7 | 76.3 | 96.3 | | metalnut | 83.5 | — | 64.3 | 39.4 | 62.5 | 67.7 | 78.1 | 77.6 | 75.6 | | screw | 17.8 | — | 43.9 | 51.7 | 58.6 | 69.3 | 52.6 | 69.4 | 74.2 | | toothbrush | 37.7 | — | 50.6 | 40.6 | 46.8 | 59.6 | 53.4 | 54.9 | 67.4 | | wood | 53.3 | — | 38.2 | 42.3 | 79.3 | 77.3 | 46.7 | 78.7 | 76.8 | | 平均 | 46.14 | — | 48.2 | 47.0 | 58.6 | 67.5 | 61.1 | 68.92 | 81.1 |
|
|
|