基于异常特征对抗学习的工业图像异常检测方法
王天飞,周文俊,项圣,贺宇航,彭博

Industrial image anomaly detection method based on adversarial learning of abnormal features
Tianfei WANG,Wenjun ZHOU,Sheng XIANG,Yuhang HE,Bo PENG
表 3 不同方法像素级AU-PR结果对比
Tab.3 Pixel-level AU-PR comparison results for different models
类别US[9]AE-SSIMRIADPaDimCutPasteCLGANMB-PFMATSNM本研究算法
bottle74.276.473.077.979.676.778.786.6
capsule25.938.233.432.369.646.252.772.8
grid10.136.458.042.664.945.345.168.5
leather40.949.145.254.675.446.857.476.3
pill62.051.660.251.876.378.666.472.5
tile65.352.651.767.287.680.389.195.6
transistor27.139.271.370.867.756.870.377.5
zipper36.163.416.668.568.755.672.686.3
cable48.224.434.355.673.867.769.475.3
carpet52.261.449.757.387.658.380.290.7
hazelnut57.833.837.453.768.460.776.396.3
metalnut83.564.339.462.567.778.177.675.6
screw17.843.951.758.669.352.669.474.2
toothbrush37.750.640.646.859.653.454.967.4
wood53.338.242.379.377.346.778.776.8
平均46.1448.247.058.667.561.168.9281.1