结合深度可分离卷积的多源遥感融合影像目标检测
|
|
陈江浩,杨军
|
Object detection for multi-source remote sensing fused images based on depthwise separable convolution
|
|
Jianghao CHEN,Jun YANG
|
|
| 表 3 本研究算法在VEDAI数据集上与其他主流算法的目标检测精度对比 |
| Tab.3 Comparison of object detection accuracy between proposed algorithm and state of arts on VEDAI dataset |
|
| 类别 | AP50/% | | cars | pickup | camping | truck | tractor | boat | van | 其他 | | YOLOrs[26] | 83.48 | 76.96 | 65.69 | 53.51 | 69.07 | 22.28 | 56.88 | 43.88 | | YOLOfusion[27] | 91.72 | 85.91 | 78.94 | 78.15 | 71.96 | 71.14 | 75.23 | 54.77 | | SuperYOLO[16] | 91.61 | 86.80 | 79.25 | 89.33 | 86.39 | 54.26 | 81.51 | 68.79 | | MF-YOLO[17] | 92.03 | 86.61 | 78.19 | 72.58 | 82.88 | 64.64 | 78.66 | 57.36 | | ICAfusion[21] | 97.05 | 96.21 | 89.64 | 92.66 | 94.50 | 64.53 | 28.33 | 83.40 | | 本研究算法 | 97.31 | 96.82 | 93.21 | 87.03 | 98.17 | 59.43 | 32.04 | 88.25 |
|
|
|