双维度交叉融合驱动的图像超分辨率重建方法
贾晓芬,王子祥,赵佰亭,梁镇洹,胡锐

Image super-resolution reconstruction method driven by two-dimensional cross-fusion
Xiaofen JIA,Zixiang WANG,Baiting ZHAO,Zhenhuan LIANG,Rui HU
表 4 所提方法在5个基准数据集上与先进方法的对比
Tab.4 Comparison with advanced methods on five benchmark datasets
方法年份倍数Set5Set14BSD100Urban100Manga109
PSNR/dBSSIMPSNR/dBSSIMPSNR/dBSSIMPSNR/dBSSIMPSNR/dBSSIM
IMDN[17]2019×238.000.960533.630.917732.190.899632.170.9283
HAN[19]2019×238.270.961434.160.921732.410.902733.350.938539.460.9785
SAN[32]2020×238.310.962034.070.921332.420.902833.100.937039.320.9792
RFANET[33]2020×238.260.961534.160.922032.410.902633.330.938939.440.9783
NLSN[34]2021×238.340.961834.080.923132.430.902733.420.939439.590.9789
EMT[35]2024×238.290.961534.230.922932.400.902733.280.938539.590.9789
BiGLFE[36]2024×238.150.960133.800.919432.290.899432.710.932938.960.9771
CMSN[37]2024×238.180.961233.840.919532.300.901432.650.932939.110.9780
CGT(本研究模型)2024×238.360.961834.110.922032.410.902633.480.939539.670.9792
IMDN[17]2019×334.360.927030.320.841729.090.804628.170.851933.610.9445
HAN[19]2019×334.750.929930.670.848329.320.811029.100.870534.480.9500
SAN[32]2020×334.750.930030.590.847629.330.811228.930.867134.300.9494
RFANET[33]2020×334.790.930030.670.848729.340.811529.150.872034.590.9506
NLSN[34]2021×334.850.930630.700.848529.340.811729.250.872634.570.9508
EMT[35]2024×334.800.930330.710.848929.330.811329.160.871634.650.9508
BiGLFE[36]2024×334.590.927630.330.844929.240.805928.760.864234.030.9460
CMSN[37]2024×334.620.928830.500.845229.220.808228.600.861234.120.9476
CGT(本研究模型)2024×334.910.930830.750.849629.360.811929.260.872934.770.9514
IMDN[17]2019×432.210.894828.580.781127.560.735326.040.7838
HAN[19]2019×432.590.900028.870.789127.780.744426.960.810931.270.9184
SAN[32]2020×432.640.900328.920.788827.780.743626.790.806831.180.9169
RFANET[33]2020×432.660.900428.880.789427.790.744226.920.811231.410.9187
NLSN[34]2021×432.640.900228.900.789027.800.744226.850.809431.420.9177
EMT[35]2024×432.640.900328.970.790127.810.744126.980.811831.480.9190
BiGLFE[36]2024×432.520.897128.640.785827.740.737726.600.801631.000.9123
CMSN[37]2024×432.410.897528.770.785127.680.739826.440.796431.000.9133
CGT(本研究模型)2024×432.810.902429.030.792127.850.745627.120.815531.810.9224