双维度交叉融合驱动的图像超分辨率重建方法
|
|
贾晓芬,王子祥,赵佰亭,梁镇洹,胡锐
|
Image super-resolution reconstruction method driven by two-dimensional cross-fusion
|
|
Xiaofen JIA,Zixiang WANG,Baiting ZHAO,Zhenhuan LIANG,Rui HU
|
|
| 表 4 所提方法在5个基准数据集上与先进方法的对比 |
| Tab.4 Comparison with advanced methods on five benchmark datasets |
|
| 方法 | 年份 | 倍数 | Set5 | | Set14 | | BSD100 | | Urban100 | | Manga109 | | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | | IMDN[17] | 2019 | ×2 | 38.00 | 0.9605 | | 33.63 | 0.9177 | | 32.19 | 0.8996 | | 32.17 | 0.9283 | | — | — | | HAN[19] | 2019 | ×2 | 38.27 | 0.9614 | | 34.16 | 0.9217 | | 32.41 | 0.9027 | | 33.35 | 0.9385 | | 39.46 | 0.9785 | | SAN[32] | 2020 | ×2 | 38.31 | 0.9620 | | 34.07 | 0.9213 | | 32.42 | 0.9028 | | 33.10 | 0.9370 | | 39.32 | 0.9792 | | RFANET[33] | 2020 | ×2 | 38.26 | 0.9615 | | 34.16 | 0.9220 | | 32.41 | 0.9026 | | 33.33 | 0.9389 | | 39.44 | 0.9783 | | NLSN[34] | 2021 | ×2 | 38.34 | 0.9618 | | 34.08 | 0.9231 | | 32.43 | 0.9027 | | 33.42 | 0.9394 | | 39.59 | 0.9789 | | EMT[35] | 2024 | ×2 | 38.29 | 0.9615 | | 34.23 | 0.9229 | | 32.40 | 0.9027 | | 33.28 | 0.9385 | | 39.59 | 0.9789 | | BiGLFE[36] | 2024 | ×2 | 38.15 | 0.9601 | | 33.80 | 0.9194 | | 32.29 | 0.8994 | | 32.71 | 0.9329 | | 38.96 | 0.9771 | | CMSN[37] | 2024 | ×2 | 38.18 | 0.9612 | | 33.84 | 0.9195 | | 32.30 | 0.9014 | | 32.65 | 0.9329 | | 39.11 | 0.9780 | | CGT(本研究模型) | 2024 | ×2 | 38.36 | 0.9618 | | 34.11 | 0.9220 | | 32.41 | 0.9026 | | 33.48 | 0.9395 | | 39.67 | 0.9792 | | IMDN[17] | 2019 | ×3 | 34.36 | 0.9270 | | 30.32 | 0.8417 | | 29.09 | 0.8046 | | 28.17 | 0.8519 | | 33.61 | 0.9445 | | HAN[19] | 2019 | ×3 | 34.75 | 0.9299 | | 30.67 | 0.8483 | | 29.32 | 0.8110 | | 29.10 | 0.8705 | | 34.48 | 0.9500 | | SAN[32] | 2020 | ×3 | 34.75 | 0.9300 | | 30.59 | 0.8476 | | 29.33 | 0.8112 | | 28.93 | 0.8671 | | 34.30 | 0.9494 | | RFANET[33] | 2020 | ×3 | 34.79 | 0.9300 | | 30.67 | 0.8487 | | 29.34 | 0.8115 | | 29.15 | 0.8720 | | 34.59 | 0.9506 | | NLSN[34] | 2021 | ×3 | 34.85 | 0.9306 | | 30.70 | 0.8485 | | 29.34 | 0.8117 | | 29.25 | 0.8726 | | 34.57 | 0.9508 | | EMT[35] | 2024 | ×3 | 34.80 | 0.9303 | | 30.71 | 0.8489 | | 29.33 | 0.8113 | | 29.16 | 0.8716 | | 34.65 | 0.9508 | | BiGLFE[36] | 2024 | ×3 | 34.59 | 0.9276 | | 30.33 | 0.8449 | | 29.24 | 0.8059 | | 28.76 | 0.8642 | | 34.03 | 0.9460 | | CMSN[37] | 2024 | ×3 | 34.62 | 0.9288 | | 30.50 | 0.8452 | | 29.22 | 0.8082 | | 28.60 | 0.8612 | | 34.12 | 0.9476 | | CGT(本研究模型) | 2024 | ×3 | 34.91 | 0.9308 | | 30.75 | 0.8496 | | 29.36 | 0.8119 | | 29.26 | 0.8729 | | 34.77 | 0.9514 | | IMDN[17] | 2019 | ×4 | 32.21 | 0.8948 | | 28.58 | 0.7811 | | 27.56 | 0.7353 | | 26.04 | 0.7838 | | — | — | | HAN[19] | 2019 | ×4 | 32.59 | 0.9000 | | 28.87 | 0.7891 | | 27.78 | 0.7444 | | 26.96 | 0.8109 | | 31.27 | 0.9184 | | SAN[32] | 2020 | ×4 | 32.64 | 0.9003 | | 28.92 | 0.7888 | | 27.78 | 0.7436 | | 26.79 | 0.8068 | | 31.18 | 0.9169 | | RFANET[33] | 2020 | ×4 | 32.66 | 0.9004 | | 28.88 | 0.7894 | | 27.79 | 0.7442 | | 26.92 | 0.8112 | | 31.41 | 0.9187 | | NLSN[34] | 2021 | ×4 | 32.64 | 0.9002 | | 28.90 | 0.7890 | | 27.80 | 0.7442 | | 26.85 | 0.8094 | | 31.42 | 0.9177 | | EMT[35] | 2024 | ×4 | 32.64 | 0.9003 | | 28.97 | 0.7901 | | 27.81 | 0.7441 | | 26.98 | 0.8118 | | 31.48 | 0.9190 | | BiGLFE[36] | 2024 | ×4 | 32.52 | 0.8971 | | 28.64 | 0.7858 | | 27.74 | 0.7377 | | 26.60 | 0.8016 | | 31.00 | 0.9123 | | CMSN[37] | 2024 | ×4 | 32.41 | 0.8975 | | 28.77 | 0.7851 | | 27.68 | 0.7398 | | 26.44 | 0.7964 | | 31.00 | 0.9133 | | CGT(本研究模型) | 2024 | ×4 | 32.81 | 0.9024 | | 29.03 | 0.7921 | | 27.85 | 0.7456 | | 27.12 | 0.8155 | | 31.81 | 0.9224 |
|
|
|