| 模型 | 模型公式 | | 文献[2]模型 | ${V_{\mathrm{p}}} = \xi (\lambda ,{\eta _{\mathrm{w}}})\dfrac{{0.08+4{\rho _{\mathrm{l}}}}}{{\lambda - 0.3}}{f_{\mathrm{c}}}b{h_0}+\alpha ({\eta _{\mathrm{w}}})\dfrac{{0.25+0.4\lambda }}{s}{A_{{\mathrm{vc}}}}{f_{{\mathrm{yv}}}}{h_0}.$ $\alpha ({\eta _{\mathrm{w}}}) = 1 - 0.077{\eta _{\mathrm{w}}},\;{A_{{\mathrm{vc}}}} = {A_{\mathrm{v}}}(1 - {\eta _{\mathrm{w}}}).$ $ \xi (\lambda ,{\eta _{\mathrm{w}}}) = \left\{ \begin{gathered} {\text{ }}1,\qquad\qquad\qquad\;\;{\eta _{\mathrm{w}}} \leqslant {\eta _{{\mathrm{cr}}}} ; \\ {({\eta _{\mathrm{w}}}/{\eta _{{\mathrm{cr}}}})^{0.069\lambda - 0.43}},{\eta _{\mathrm{w}}} > {\eta _{{\mathrm{cr}}}} . \\ \end{gathered} \right.\;\;{\eta _{{\mathrm{cr}}}} = 10.4(c/{d_{\mathrm{v}}}^2)+{f_{{\mathrm{cu}},{\mathrm{k}}}}/{d_{\mathrm{v}}}. $ | | 文献[7]模型 | ${V_{\mathrm{p}}} = 1.75\dfrac{{{f_{\mathrm{t}}}{b_{\mathrm{c}}}{h_0}_{\mathrm{c}}}}{{\lambda +1}}+\dfrac{{{f_{{\mathrm{yvc}}}}{A_{{\mathrm{vc}}}}{h_0}}}{s}.$${f_{{\mathrm{yvc}}}} = {f_{{\mathrm{yv}}}}\dfrac{{1 - 1.121\;9{\eta _{\mathrm{w}}}}}{{1 - {\eta _{\mathrm{w}}}}} \geqslant 0.$ | | 文献[3]模型 | ${V_{\mathrm{p}}} = \psi {f_{\mathrm{c}}}b{h_0}\left[\dfrac{{0.08}}{{\lambda - 0.3}}+\dfrac{{100{\rho _{\mathrm{l}}}}}{{\lambda {f_{\mathrm{c}}}}}\right]+\alpha \dfrac{{(0.4+0.3\lambda )}}{s}{A_{\mathrm{v}}}{f_{{\mathrm{yv}}}}{h_0}.$ $\psi = \left\{ \begin{gathered} {\text{ }}1,{\text{ }}{\eta _{\mathrm{l}}} \leqslant 5\text{%} ; \\ 1.098 - 1.96\eta_{\mathrm{l}},{\eta _{\mathrm{l}}} > 5\text{%} . \\ \end{gathered} \right.\;\;{\text{ }}\alpha = 1 - 1.059{\eta _{\mathrm{w}}} \geqslant 0.$ |
|