考虑多源混合不确定性的并联机器人降敏设计
|
|
陶明哲,徐敬华,张树有,谭建荣
|
Desensitization design for parallel robots under multi-source hybrid uncertainty
|
|
Mingzhe TAO,Jinghua XU,Shuyou ZHANG,Jianrong TAN
|
|
| 表 2 多靶分域优化与典型优化算法的效果对比 |
| Tab.2 Comparison of multi-objective sub-regional optimization with typical optimization algorithm |
|
| 方法 | 设计变量$ /\mathrm{c}\mathrm{m} $ | | 适应度 | | $ {r}_{{\mathrm{c}}} $ | $ {r}_{{\mathrm{a}}} $ | $ {l}_{{\mathrm{c}}} $ | $ {l}_{{\mathrm{a}}} $ | | $ \left\| \Delta{\boldsymbol{Z}} \right\| /{\mathrm{mm}}$ | $ k $ | $ {F}_{\max} $ | $ {D}_{\max} $ | | 原始设计变量 | 90 | 65 | 125 | 150 | | 0.1691 | 1.18 | 8.88×10−5 | 1.58×104 | | PSO | 105 | 55 | 115 | 140 | | 0.1627 | 1.46 | 1.06×10−4 | 2.02×104 | | NSGA-II | 87.85 | 64.31 | 115.02 | 159.68 | | 0.1696 | 1.14 | 1.05×10−4 | 1.24×104 | | 多靶分域优化 | 86.83 | 56.85 | 115.43 | 156.99 | | 0.1668 | 1.07 | 9.63×10−5 | 1.20×104 |
|
|
|