基于多通道卷积方式的土壤重金属镍含量定量预测
付承彪,庄清源,田安红

Quantitative prediction of soil heavy metal nickel content based on multi-channel convolution method
Chengbiao FU,Qingyuan ZHUANG,Anhong TIAN
表 2 不同策略下的深度学习模型预测性能对比
Tab.2 Comparative analysis of deep learning model prediction performance under different strategies
模型$ {{R}}_{\mathrm{c}}^{2} $$ {\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}}_{\mathrm{c}} $$ {\mathrm{R}\mathrm{P}\mathrm{D}}_{\mathrm{c}} $$ {{R}}_{\mathrm{v}}^{2} $$ {\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}}_{\mathrm{v}} $$ {\mathrm{R}\mathrm{P}\mathrm{D}}_{\mathrm{v}} $
MTF-ResNet0.96738.0779.5250.853114.3872.604
MTF-VGG0.93072.0664.4530.796134.7182.211
MTF-Inception0.99223.28413.7080.814128.4702.319
MTF-MobileNet0.92176.0004.1230.770143.0222.083
MTF-GASF-ResNet0.87795.5934.0540.872106.3792.800
MTF-GASF-VGG0.86687.3133.8030.839119.7182.488
MTF-GASF-Inception0.91953.5047.5210.833121.7772.446
MTF-GASF-MobileNet0.95254.5716.3540.799133.5302.231
MC-ResNet0.92077.8504.6810.90193.5733.184
MC-VGG0.90973.9144.8880.850115.2642.585
MC-Inception0.91974.9524.2210.854113.7732.618
MC-MobileNet0.94261.4965.0960.844117.8412.528