融合用户行为与评论关系的双通道电商欺诈检测方法
|
|
凤丽洲,白至纯,王友卫
|
Dual-channel E-commerce fraud detection method integrating user behavior and review relationships
|
|
Lizhou FENG,Zhichun BAI,Youwei WANG
|
|
| 表 2 不同欺诈检测方法在实验用数据集上的性能对比 |
| Tab.2 Performance comparison of different fraud detection methods on experimental datasets % |
|
| 方法 | Pet | | Garden | | Instrument | | Yelp | | AUC | Rm | F1 | | AUC | Rm | F1 | | AUC | Rm | F1 | | AUC | Rm | F1 | | GCN | 49.89 | 50.00 | 49.12 | | 49.70 | 50.00 | 48.45 | | 55.11 | 51.43 | 45.88 | | 52.35 | 50.00 | 49.10 | | GAT | 50.48 | 50.32 | 49.53 | | 49.04 | 50.00 | 48.75 | | 58.29 | 52.77 | 48.75 | | 51.70 | 50.21 | 49.29 | | GraghSAGE | 74.71 | 50.00 | 49.89 | | 73.19 | 50.13 | 49.45 | | 76.22 | 55.43 | 57.68 | | 67.43 | 50.00 | 49.29 | | GEM | 64.36 | 59.16 | 53.94 | | 54.39 | 52.11 | 51.77 | | 66.72 | 63.25 | 52.79 | | 64.87 | 49.89 | 49.09 | | GeniePath | 53.99 | 50.00 | 50.03 | | 55.77 | 51.02 | 48.97 | | 53.21 | 50.00 | 49.58 | | 51.20 | 50.00 | 49.79 | | FdGars | 63.93 | 52.00 | 50.14 | | 56.12 | 51.31 | 48.58 | | 52.58 | 50.78 | 47.88 | | 52.37 | 51.32 | 50.03 | | GraphConsis | 79.93 | 74.88 | 57.68 | | 74.58 | 71.59 | 54.26 | | 77.11 | 72.29 | 55.98 | | 69.18 | 52.10 | 49.28 | | PC-GNN | 67.86 | 61.90 | 51.42 | | 63.66 | 59.07 | 53.90 | | 63.67 | 59.34 | 50.01 | | 61.08 | 54.77 | 52.82 | | EC-GNN | 87.14 | 79.08 | 62.05 | | 88.07 | 78.52 | 67.03 | | 88.89 | 81.09 | 65.21 | | 86.73 | 79.03 | 54.26 |
|
|
|