基于时空图注意力网络的多变量时序数据异常检测方法
|
|
肖刚,卢大鹏,郑文博,程振波,张元鸣
|
Multivariable time series data anomaly detection method based on spatiotemporal graph attention network
|
|
Gang XIAO,Dapeng LU,Wenbo ZHENG,Zhenbo CHENG,Yuanming ZHANG
|
|
| 表 3 所提模型的模块消融实验结果 |
| Tab.3 Modular ablation experimental results for proposed model % |
|
| 模型 | SWaT | | MSL | | SMD | | PSM | | P | R | F1 | | P | R | F1 | | P | R | F1 | | P | R | F1 | | TNO | 85.59 | 88.29 | 86.91 | | 76.42 | 85.61 | 80.75 | | 83.35 | 80.26 | 84.25 | | 93.71 | 89.82 | 91.72 | | GCNO | 72.15 | 78.27 | 75.08 | | 74.45 | 76.50 | 75.46 | | 60.55 | 66.74 | 63.49 | | 78.93 | 82.64 | 80.74 | | STGATA | 86.78 | 88.50 | 87.63 | | 85.71 | 81.54 | 83.57 | | 87.36 | 84.07 | 85.68 | | 90.02 | 92.93 | 91.45 | | STGATC | 85.13 | 81.08 | 83.05 | | 84.41 | 82.51 | 84.42 | | 84.90 | 82.71 | 83.79 | | 88.45 | 85.42 | 86.90 | | STGAT | 90.99 | 95.37 | 93.13 | | 89.74 | 86.85 | 88.06 | | 89.95 | 85.04 | 87.42 | | 98.49 | 96.62 | 97.54 |
|
|
|