基于时空图注意力网络的多变量时序数据异常检测方法
肖刚,卢大鹏,郑文博,程振波,张元鸣

Multivariable time series data anomaly detection method based on spatiotemporal graph attention network
Gang XIAO,Dapeng LU,Wenbo ZHENG,Zhenbo CHENG,Yuanming ZHANG
表 2 不同模型在4个数据集中的性能评价指标
Tab.2 Performance evaluation metrics of different models in four datasets %
模型SWaTMSLSMDPSM
PRF1PRF1PRF1PRF1
DAGMM89.9257.8470.4089.6063.9374.6267.3049.8957.3093.4970.0380.08
LSTM86.1583.2784.6985.4582.5083.9578.5585.2881.7876.9389.6482.80
LSTM-VAE76.0089.5082.2073.7188.5480.4475.7690.0782.3073.6289.9280.96
BeatGAN64.0187.4673.9289.7585.4287.5272.9084.7179.4890.3093.8492.04
OminiAnomoly81.4284.3082.8389.7585.4087.5483.6886.8285.2288.3974.4680.83
THOC83.9386.3685.1386.4588.9287.6679.7690.9584.9988.1490.9989.54
MTAD-GAT81.4284.3082.8387.5484.4285.9590.1983.2586.5872.3977.4674.83
GDN99.3568.1280.8278.4563.0769.9274.0261.4367.0992.3285.8287.66
TimesNet86.7697.3291.7483.9286.4285.1588.6683.1485.8198.1996.7697.47
DLinear81.5195.6387.9686.4488.1287.3487.6283.8185.7297.2895.4696.32
STGAT90.9995.3793.1389.7486.8588.0689.9585.0487.4298.4996.6297.54