基于时空图注意力网络的多变量时序数据异常检测方法
|
|
肖刚,卢大鹏,郑文博,程振波,张元鸣
|
Multivariable time series data anomaly detection method based on spatiotemporal graph attention network
|
|
Gang XIAO,Dapeng LU,Wenbo ZHENG,Zhenbo CHENG,Yuanming ZHANG
|
|
| 表 2 不同模型在4个数据集中的性能评价指标 |
| Tab.2 Performance evaluation metrics of different models in four datasets % |
|
| 模型 | SWaT | | MSL | | SMD | | PSM | | P | R | F1 | | P | R | F1 | | P | R | F1 | | P | R | F1 | | DAGMM | 89.92 | 57.84 | 70.40 | | 89.60 | 63.93 | 74.62 | | 67.30 | 49.89 | 57.30 | | 93.49 | 70.03 | 80.08 | | LSTM | 86.15 | 83.27 | 84.69 | | 85.45 | 82.50 | 83.95 | | 78.55 | 85.28 | 81.78 | | 76.93 | 89.64 | 82.80 | | LSTM-VAE | 76.00 | 89.50 | 82.20 | | 73.71 | 88.54 | 80.44 | | 75.76 | 90.07 | 82.30 | | 73.62 | 89.92 | 80.96 | | BeatGAN | 64.01 | 87.46 | 73.92 | | 89.75 | 85.42 | 87.52 | | 72.90 | 84.71 | 79.48 | | 90.30 | 93.84 | 92.04 | | OminiAnomoly | 81.42 | 84.30 | 82.83 | | 89.75 | 85.40 | 87.54 | | 83.68 | 86.82 | 85.22 | | 88.39 | 74.46 | 80.83 | | THOC | 83.93 | 86.36 | 85.13 | | 86.45 | 88.92 | 87.66 | | 79.76 | 90.95 | 84.99 | | 88.14 | 90.99 | 89.54 | | MTAD-GAT | 81.42 | 84.30 | 82.83 | | 87.54 | 84.42 | 85.95 | | 90.19 | 83.25 | 86.58 | | 72.39 | 77.46 | 74.83 | | GDN | 99.35 | 68.12 | 80.82 | | 78.45 | 63.07 | 69.92 | | 74.02 | 61.43 | 67.09 | | 92.32 | 85.82 | 87.66 | | TimesNet | 86.76 | 97.32 | 91.74 | | 83.92 | 86.42 | 85.15 | | 88.66 | 83.14 | 85.81 | | 98.19 | 96.76 | 97.47 | | DLinear | 81.51 | 95.63 | 87.96 | | 86.44 | 88.12 | 87.34 | | 87.62 | 83.81 | 85.72 | | 97.28 | 95.46 | 96.32 | | STGAT | 90.99 | 95.37 | 93.13 | | 89.74 | 86.85 | 88.06 | | 89.95 | 85.04 | 87.42 | | 98.49 | 96.62 | 97.54 |
|
|
|