基于时空信息融合的高速公路区域货运量预测模型
赵利英,王占中

Prediction model for regional freight volume on highways based on spatiotemporal information fusion
Liying ZHAO,Zhanzhong WANG
表 1 不同长短期记忆网络模型的货运量预测结果对比
Tab.1 Comparison of freight volume prediction results among different long short-term memory models
gi日期NFVTT-LSTMS-LSTMTS-LSTM
NFVPer/%NFVPer/%NFVPer/%
长春市2020–11–08−1.760 35−0.425 58−75.821.57041−10.791.61972−7.99
2021–01–09−1.041 60−0.987 70−5.170.84213−19.151.02464−1.63
2021–05–131.500 421.092 39−27.191.623758.221.575685.02
吉林市2020–11–09−1.013 21−0.965 39−4.720.58918−41.850.99375−1.92
2020–12–150.072 360.026 48−63.410.08794821.530.0856218.33
2021–01–07−0.542 42−0.606 1711.750.7232633.340.588818.55
松原市2020–11–140.562 480.408 93−27.300.53919−4.140.55495−1.34
2021–01–27−2.074 66−2.126 462.502.7736133.692.06008−0.70
2021–03–281.101 011.129 072.551.02592−6.821.09384−0.65