基于可达集和强化学习的智能汽车决策规划
高洪伟,尚秉旭,张鑫康,王洪峰,何维,裴晓飞

Decision-making and planning of intelligent vehicle based on reachable set and reinforcement learning
Hongwei GAO,Bingxu SHANG,Xinkang ZHANG,Hongfeng WANG,Wei HE,Xiaofei PEI
表 2 测试场景随机变量分布参数
Tab.2 Random variable distribution parameters in test scenario
参数随机变量
1)注:U表示随机变量服从区间( )上的均匀分布.
车辆初始位置(前)/m$\begin{array}{*{20}{l}} {{{U}}(10,30)({\rm{checkpointA}})}^{1)}/ \\ {{{U}}(470,500)({\rm{checkpointC}})} \end{array}$
车辆初始位置(中)/m$\begin{gathered} {{U}}(40,75)({\rm{checkpointA}})/ \\ {{U}}(510,545)({\rm{checkpointC}}) \\ \end{gathered} $
车辆初始位置(后)/m$\begin{gathered} {{U}}(90,120)({\rm{checkpointA}})/ \\ {{U}}(560,590)({\rm{checkpointC}}) \\ \end{gathered} $
静止车辆初始位置/m$ \begin{gathered} {{U(120,320)(}}{\rm{checkpointA}}{\text{)}}/ \\ {{U(590,760)(}}{\rm{checkpointC}}{\text{)}} \\ \end{gathered} $
静止车辆压线概率/%$ 25$
车辆初始车速/(m·s−1)$U(6,15)$